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Preface

In the words of Kenneth Grahame “there is nothing–absolutely nothing–half so much worth doing as simply
messing about in boats.” With that in mind, the 2018 International Robotic Sailing Conference (IRSC) and World
Robotic Sailing Championship (WRSC), hosted by the University of Southampton, was no exception!

This year’s event, not only marked the 10th anniversary of WRSC & IRSC, but also coincided with a long awaited
success: the first robotic sailing vessel to successfully complete the Microtransat challenge, the first crossing of
the Atlantic Ocean since the competition conception in 2005. The WRSC event, which ran from 26th August
through to the 1st September 2018 was held at the historical Calshot Hanger – a split of land extending into the
Solent, just outside Southampton. An area renowned for sailing, the hovercraft, the Spitfire and the Titanic. This
provided a spectacular backdrop for the 5 day competition, with a variety of Ocean liners, cruise ships, container
ships, ferries and yachts passing by as they came into and out of Southampton!

With industry and research in the maritime sector increasingly focusing on algorithms for planning and control
of vehicles as part of collaborative tasks, WRSC and the development of autonomous boats through friendly
competition continue to become more prominent and important. Inspired by the collaborative missions of surface
and underwater vehicles demonstrated by the National Oceanography Centre and ASV global, the difficulty of
the area scanning challenge was increased by making it a collaborative task. This lead to, in one afternoon, an
impressive 28 000+ square metres being scanned at a resolution of 4 m x 4 m.

Following the World Robotic Sailing Championship, the International Robotic Sailing Conference provided a
forum to further discuss and share both WRSC vessel designs (including sensor developments, modelling and
control methods) as well as discuss the development of maritime autonomous vehicles more widely. The 2 day
conference, hosted at the University of Southampton Boldrewood Campus, included presentations of the eleven
peer reviewed papers (published here). In addition a series of lighting talks, discussion sessions, and further
discussions during the conference dinner and tour of the National Oceanography Centre (NOC) inspired the
competitors and researchers for next year’s event.

The editors would like to thank all authors, the Program Committee, the Southampton volunteers, the University
of Southampton, the National Oceanography Centre, ASV global and all other sponsors whose contribution made
the 2018 IRSC and WRSC possible. Thank you!
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Abstract

This paper introduces the design of an open source autonomous sailing
robot with emphasis on its accessibility, generality and extendability.
To meet such requirements, a generic control box connecting an Ar-
duino board and a Raspberry Pi computer was tailor-made so as to
host the robot operating system (ROS) and to interact with versatile
sensors and actuators. The goal of such a project is to create an ac-
cessible, generic and expendable platform of autonomous sailboats for
wider education and research publicity and engagement. Autonomous
sailing test for the developed sailboat was also conducted to validate
its design.

1 Introduction

Over the last two decades, there are growing interests in developing autonomous sailing robots. Different groups
have already made fully autonomous sailboats, ready to deploy for data gathering purposes and almost able to
cross the transatlantic ocean in the Microtransat challenge (Meinig et al., 2015; Ghani and Hole, 2014). Sailboat
research projects are also growing, most of which are particularly structured for specific problems (Naveau et al.,
2013; Rathour et al., 2017; Silva Junior et al., 2016; O’Hara, 2017) or others for generic research (Domı́nguez-
Brito et al., 2015; Miller et al., 2014; Wirz et al., 2015; Plumet et al., 2015). There are also various kinds of
software, hardware or mechanical design projects (Santana-Jorge et al., 2017; Neal, 2006; Lam et al., 2016).
While the motives of building such robots are multiple with no wide-spread applications for autonomous sailing
technologies, the research in this field is still in its early stage compared to other autonomous vehicles such as
cars or drones.

An autonomous sailboat is interesting in that it can use all available energy around it to complete its mission
i.e. wind, solar and wave energy (Liu et al., 2016). This makes it an important subject for long-duration
applications such as oceanography, surveillance and reconnaissance. Moreover, such robots can play a significant
role in solving nowadays environmental and ecological problems. The energy needed to operate a sailboat is
relatively small in comparison to other autonomous vehicles (Cruz and Alves, 2008). Nevertheless, the market

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.
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and the commercial applications are yet to be explored to bring greater interest to it. In that context, there
is a need to develop a modular sailing robot platform with accessibility, generality and expandability so as to
facilitate the development of such robots with more focus on their control and applications.

Most projects of autonomous sailboats are open source. While most of them explain the hardware specifi-
cations and some explain the software designs, it is still hard for a researcher to make their own sailboat in a
short amount of time and to focus on control algorithms or applications. This asks for an accessible hardware,
already available in most research labs and more importantly a friendly software architecture which makes it
straightforward for any user to test control algorithms.

In the same way 3D printers are designed, fully open-sourced and with accessible hardware, a control box
was made for highly generic hardware and software structures. That way, the control box can be put in any
RC (Radio-Controlled) sailboat hull, connect to sensors and servo-motors and transform it into an autonomous
sailboat. The software architecture has to be flexible so that in couples of lines of code, the sailboat can respond
and act according to the instructions. So this paper will address the development of an accessible, generic and
expendable autonomous sailboat with particular emphasis on the aspect of control hardware and software, which
is in the format of a control box.

2 Accessible Hardware Configuration

The hardware architecture is similar to other sailboats. To stay low on budget and to use reliable resources,
most projects use Arduino boards and Raspberry Pis, which can be easily accessed by most robotics laboratories
(Krauss, 2016; Lazarin and Pantoja, 2015; Miller et al., 2014). The hardware structure is also mostly the same
(Lam et al., 2016; Plumet et al., 2015), it consists of a low-level computer and a high-level computer. In this
case, the Arduino acts as a low-level controller acquiring data from sensors and acting on the actuators and
the Raspberry Pi acts as a high-level controller with more intensive algorithms as shown in Figure 1. Making
a specific purpose board can lower the price and simplify the architecture (Alvira et al., 2013; Cabrera-Gámez
et al., 2013), but it would decrease the accessibility of such a hardware. Others would use a bigger computer
instead of the Raspberry Pi to have more resources for the algorithms (Naveau et al., 2013; Lam et al., 2016)
but this will increase the cost and reduce accessibility. The newest Raspberry Pis are good enough to process
complex control algorithms (Benchoff, 2016; Larabel, 2018). It would also be possible to use the Raspberry Pi
alone. Adding low-level microcontrollers provide an extra security and free valuable resources of the high-level
computer for main control tasks.

Along with the technology development, the price for Arduino boards and Raspberry Pis will continue to
decrease while their performance will continue to improve, which makes such a hardware architecture more
attractive in the long term.

Figure 1: Hardware Architecture.

2.1 Specifications and Architecture

The control box was designed to comply with as many standards as possible. While the boards presented here
comply with our configurations, changes can be made to accept other configuration of power necessities. The
sailboats are powered with a 2S (Two cells) LiPo battery which outputs a maximum of 8.4V (4.2V per cells)
and nominal at 7.4V (3.7V per cells). We set our requirements to at least two hours of continuous operation
without any other energy input such as solar panels. From all the sensors and actuators the sailboats have, we
are at about 2A usage at full use. This means we must have at least a 4000mAh battery. Of course, this also
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depends on other factors such as the boat size, weight and usage. For standardization, it is considered that 3S
(maximum 12.6V) or even 4S (maximum 16.8V) batteries can be used.

Particular sensors or actuators are not discussed in this paper. But based on RC models of sailboats and
expertise of users, a standard as generic as possible was designed. As such, a 3 pin connector was considered for
small servomotors connection. Other connectors were chosen arbitrarily for robustness while keeping standard
pin configurations. Those configurations are to be discussed further. For a sailboat to be autonomous, it needs
at least a way to know its position, heading and wind direction. We will use a GPS, IMU and a wind direction
sensor in our examples. This control box is designed to be able to connect with other sensors. Concerning
actuators, it has to control the sail and the rudder.

2.2 Custom Interface Board

While the platforms chosen are accessible, they are development platforms and are unfit for industrial appli-
cations. Pin headers are the connectors in both boards. They are not suitable for robust and waterproof
connections. To solve this problem, a custom board is made to have better industry-grade connectors. This
custom board decreases the accessibility for researchers but it highly improves the robustness of the control box.
Making such a board can hinder the accessibility with some laboratories which do not have the facilities to make
such a PCB board. We suggest the use of third-parties industries, accessible to anybody, to make those boards.

This custom board is connected to the Arduino and the Raspberry Pi. It manages the power and extracts all
connectors from the Arduino to sensors and actuators. It is also designed to contain all the boards in a small
sized box and be mechanically robust. The following sections will describe in detail the choices in the different
parts of the boards. All the details and documents for DIY can be found in the Meca Repository of (Sailboat,
2018).

2.2.1 Power Management

The power management is simple and efficient. The unit manages the energy supply for sensors, actuators and
the Raspberry Pi. It is simply made of regulators for each group of loads. We use switching regulators because
of its high efficiency. These regulators can input a large range of voltage (6.5-32V) and output a constant
voltage (5V). They are used for the actuators and the Raspberry Pi. One linear regulator can manage the power
supply to multiple sensors because of the low energy consumption of sensors. While these regulators were chosen
based on our configuration, the footprints on the custom boards are standard, making it possible to solder any
regulators.

Heat and energy is a problem for underwater and surface vehicle. Using linear regulators or regulators with
low efficiency can hinder the boat capacity. Switching regulators are used with efficiency up to 96% to lower the
heat generated. The Raspberry Pi is the biggest consumer of energy. In a linear regulator, the ballast lowers the
energy by outputting heat. This would end up wasting (8.4V − 5V ) × 2A = 6.8W of energy while a switching
regulator would waste only 5V × 2A× ( 1

0.96 − 1) = 0.42W (considering 96% efficiency) for the Raspberry Pi.

2.2.2 Connectors and Communication

Connectors play a big part in robustness for robots. In mobile robots, vibration and movement can remove
the cables from the pins. Robust, industry-grade connectors that are easy to plug in and out frequently was
necessary for sensors. JST connectors were chosen purposely for the latter, based on usage experience and
industry standards. Concerning the battery connections, two pin holes are placed on the custom board on which
any wire connectors can be soldered. In our case, our battery had HXT 4mm connectors and as such HXT wire
adapters were soldered, as shown in Figure 2. Finally, the custom boards also have a special compartment for
radio receivers, for which a row of 3 pin holes is made available. Up to 6 channels are pluggable.

There are some standards in connection and communication protocols for most sensors and actuators. Most
notable communication protocols range from Serial communication, I2C protocol to Analog signal and Digital
interrupts. Each of these communications come with a standard wiring. Sensors have 2 wires for power - Ground
and Power (5V) - and the rest for communication - RX, TX for Serial, SDA, SCL for I2C, or 1 pin for analog
and digital signal. Of course, other protocols and wirings exist but those are the most common.

This custom board accepts all of those different connectors and communications and allows access to the cor-
responding Arduino pins with mechanical connectors. Once connected, the software part arranges the connection
inside the system through a configuration file.

Vessel Development & Modelling
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2.2.3 Waterproofing

One of the challenges in sailboats is waterproofing all the electronic components. Several 3D printed boxes were
made for the sensors and the control box, all available online at the Meca repository of (Sailboat, 2018). A key
problem arising from waterproofing is heat. Any electronic components generate heat. An enclosed system in
plastic or wood insulates it and keep the heat inside, which may cause the components to overheat. For low-power
sensors such as GPS or IMUs, plastic is enough to dissipate the heat. But for heat-generating components such
as the main computer, a high dissipating material is needed. For this case, a side of the box (close to the main
computer) is metal.

The 3D printed case for the boards’ stack is a frame-like box which leaves open the connectors. While the
box is not fully waterproof, it is enough to protect the boards from the small amount of water coming inside
the boat. Batteries were chosen to be ROAR approved, meaning they are approved for racing. These batteries
are hard-cased and protected against high impact (Rules, 2013). The hard case in itself provides a weatherproof
package for batteries. The hulls of the boat are sealed as much as possible to waterproof the whole sailboat.

2.3 Hardware

Figure 2 shows the board and its components. Two boards were made to form the overall structure. The overall
board stack dimensions are 70x130x40mm. It was designed to be placed in our 1m-long boat1. Table 1 shows
the overall components used and their specifications. A complete detailed BOM (Bill of Material) can be found
in the Meca repository of (Sailboat, 2018). It is based on the high prices of each component, for instance, the
Arduino Mega can be found at a lot cheaper cost. The cost of the custom boards is at £40.1 using a third-party
service to print the circuit boards. The biggest cost comes from the switching regulators. The remaining cost of
the whole sailboat would be on the hull, the sensors, actuators and battery.

Figure 2: Back and front of the custom board and the assembled control box.

Table 1: Hardware Specifications and Approximate Price of the Control Box (without sensors and motors)

Part Description Total Price (£)
Board Components Resistors, Capacitors, Inductors, diodes and regulators 19.1
Connectors Industrial Grade Connectors - Arduino and Raspberry Pi Connectors 12
Circuit Board Third-Party Service from SeeedStudio 8
Screws and Spacers Mechanical constraints - M3 1
Arduino Mega Low-level Microcontroller Board 28
Raspberry Pi 3 Model B High-level SBC Computer 32
Total 100.1

3 Generic Software Architecture

Sailboats come in different formats, small or long, one or two rudders, winch motors for sails or direct actuation.
As the hardware can change among different sailboats, the software architecture should be able to adapt to

1Length Over All
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those varying configurations. In a similar way with 3D printers that built upon the marlin firmware (Marlin,
), a configuration file is used to configure the customized hardware specifications. Not only does the hardware
configuration change but different brands and different protocols of sensors and actuators are used. This is
solved by using a component-based architecture, highly used in the video game industry and robotics (Gregory,
2014; Elkady and Sobh, 2012; Santana-Jorge et al., 2017). It simplifies the development of libraries of different
components while maintaining uniformed standard and compatibility with the overall system.

Concerning the Raspberry Pi, no configuration is needed. The focus is on the usability and interfaces for users
to add their own controllers. ROS (Robot Operating System) has been increasingly used for robotics research
and development (Cousins, 2011). Using ROS as the base of the software architecture, the project can benefit
from existing work done by other researchers in robotics and be able to share its specific outcomes with the
community as well. With ROS, a software architecture has been done for users to easily and rapidly integrate
their controllers into the robot.

3.1 Arduino Programming

The Arduino is the low-level controller. It acquires all the data from different sensors and acts upon the actuators.
Once all the data is updated, it sends them to the main computer and also receives the instructions from it. The
code and the wiki for installation instructions can be found in Arduino Interface repository of (Sailboat, 2018).

A Component-Based architecture is exploited to be as generic as possible with regards to the hardware. Such
architecture fully uses the OOP (Oriented-Object Programming) aspect of C++, the language used for Arduino.
The principle is based on the semantics of the architecture. We have a main class, the Sailboat, which contains
component objects : Sensors, Actuators and Basic Controllers. Those components have their own methods to
conduct certain tasks. Sensors have the common methods of acquiring data from sensors and sending them to
the main computer. Actuators have the common method of acting upon the actuators to the desired set-point.
Finally, Basic Controllers have the common methods of controlling, taking the data from sensors and acting
upon the actuators. The implementation of those methods might differ among different products but the inputs
and outputs are the same. Using OOP, you can derive from these components class and would only need to
implement the methods. The Sailboat class would automatically call the right methods depending on the derived
component class. This architecture makes it simple for any user, using a new sensor or actuator, to implement
the methods and stay compatible with the sailboat hardware configuration.

The Basic Controllers are low-level controllers such as rudder control, sail control or heading control. This
enables the main computer to send different inputs to the Arduino, depending on the controller, e.g. A Potential
Field controller might output a heading while a Line Follower controller might directly act upon the rudder
without adjusting the sail.

On top of those basic controllers are security controllers such as the RC controller and the Return Home
controller. They will be discussed further in section 3.3 on safety.

Figure 3 shows a UML (Unified Modeling Language) of the different classes in the Arduino architecture. For
the optimal sail angle and the rudder angle, we are constructing our code on (Jaulin and Le Bars, 2012) for
our basic controllers. You can see the implementation of all the methods at Arduino Interface repository of
(Sailboat, 2018).

3.2 Raspberry Pi Programming and ROS

The Raspberry Pi is the main computer in this architecture. It is loaded with a lightweight Ubuntu Operating
System. Its goal is to calculate the complex control algorithms using the data sent by the Arduino and act on
the actuators by commanding the Arduino. In both the Arduino and the Raspberry Pi, the architecture is made
so that any users will be able to focus on the algorithm and not the integration of it. The architecture also
uses the OOP. ROS is compatible with Python and C++ languages and the same architecture is used for both
languages. The code related to the Raspberry Pi can be found on ROS repository of (Sailboat, 2018).

This architecture is different from the Arduino software architecture in that it focuses on usability and er-
gonomics for users. The goal of such an architecture is to free the user from integration problems and focus only
on the important part of the research, which is the control of the sailboat.

For that reason, the architecture automatically takes over communication tasks with the Arduino, acquiring
and parsing the data from it and making it available to the user. All the user needs to do is to implement two
methods : a setup method to initialize all the variables and a control method where the algorithm has to be
implemented, which sends the results to the Arduino.

Vessel Development & Modelling
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Figure 3: UML of the Component-Based Architecture.

The newest Raspberry Pis come with a WiFi chip. This enables WiFi communication with another computer
without cables. When it boots up, it creates a hotspot, it is then possible to connect to it, SSH (Secure Shell)
into the Raspberry Pi and controls it directly from a laptop.

ROS is used for multiple reasons. It is first highly used by the robotics community around the world and
some users might consider it standard. It also helps in making robust protocol communication with the Arduino
and among different components of the sailboat. Finally, it already has various libraries/applications (called
nodes in ROS) used in robotics. For the latter to work, a certain standard had to be met while working on the
architecture to make it compatible with most nodes, particularly on the message structures of each sensor.

Figure 4: A graph of ROS topics and nodes when applying a waypoint-following control.

All the topics concerning the sensors are published by the Arduino. The Raspberry Pi only launches a node
to connect to the Arduino and the controller node. The controller node then sends commands to the Arduino
through the /sailboat/sailboat cmd and /sailboat/sailboat msg topics at a regular frequency, chosen by the user.

3.3 Safety

Multiple security measures are incorporated in the Arduino and Raspberry Pi architectures. For that purpose,
watchdogs are both implemented inside the Arduino and the Raspberry Pi.

To be sure that the Raspberry Pi is still on or is not freezing, it sends a message every 30 seconds to the Arduino.
If the latter does not receive anything for 5 minutes, it will consider the Raspberry Pi to be malfunctioned. Such
safety measures have been implemented automatically in the software architecture and the user does not need
to write any further code for them.

The Arduino itself have securities in case of blockage. With a watchdog, the Arduino will set itself in a safe
mode if nothing is happening. A watchdog is present in most microcontrollers. This feature is present in the
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Arduino and acts as a hardware timer that has to be reset frequently. If the timer goes over a certain amount,
it will restart the microcontroller. This timer is independent of the software and will run whether the software
is blocked or not.

When a watchdog is triggered i.e. when the Raspberry Pi is not responding or the Arduino is blocked, the
lowest-level controller, the Arduino, will set itself into Return Home control where it will come back to the point
where it was turned on.

Another emergency trigger is the Radio Controller. If the radio controller is turned on, it takes control over the
autonomous mode and ignores the Raspberry Pi commands. Two modes have been incorporated. One manual
where both the sail and the rudder has to be controlled using the RC transmitter. Another semi-automatic
where the sail uses an optimal sail angle based on the wind sensor, the user just needs to control the rudder.

4 Open Source

The main objective of this work is to create an accessible, generic and expandable platform for autonomous
sailboat development. Everything detailed here is available online at https://github.com/Plymouth-Sailboat.
We use the Github platform to share publicly all the work, including the electronic circuits and the source code.
A lot of efforts were taken to write a detailed guide for new users to integrate this control box into their sailboat
so as to develop their own controllers. This open-source work will always be maintained, updated and upgraded
along the researches and any feedback to be received. This will give other laboratories the opportunity to build
their own sailboats at a low cost and a reduced effort.

5 Tests and Experiments

We tested this control box on two sailboats : A 1m mono-hull sailboat and a 2m mono-hull sailboat as shown
in Figure 5. Actuators and sensors were bought and installed along the control box inside empty sailboat hulls.
Two tests were done, first in a lake near the University of Plymouth, then a second test was performed on the
west coasts of France. Each of these sailboats uses the same GPS and AHRS sensors but the wind sensors
are different. The small boat has only a wind direction sensor, while the other has also an anemometer. The
actuators on each boat are different. Two different configuration files were created for those boats but the same
code was running on both the Arduino and the Raspberry Pi on each boat. This involved changing only one file
called the config-Sailboat.h which contains all the different parameters of the hardware such as : minimum and
maximum actuator angles, minimum and maximum values sent by the different sensors, numbers of sensors and
actuators, etc...

A couple of well-known algorithms were tested. On the Arduino side, as stated above, only low-level controllers
were used. One which takes the rudder and sail command directly from the Raspberry Pi, and another one
receiving the cap and applying an optimal sail angle and an appropriate angle for the rudder. When receiving
the cap, for the sail angle δs and the rudder angle δr we have :

δs =
π

2

(
cos(ψ) + 1

2

)
(1)

{
δr = rmax sin(θ − θ̄), cos(θ − θ̄) ≥ 0

δr = rmaxsign(sin(θ − θ̄)), else
(2)

with ψ being the wind coming from the wind sensor (in the boat referential), rmax being the maximum rudder
angle, θ the boat heading and θ̄ the cap. We consider the sail maximum angle of π

2 . A tack strategy is also
applied in case of upwind navigation, similar to the one in (Jaulin and Le Bars, 2012).

On the Raspbbery Pi side, a potential field method based on (Petres et al., 2012), a simple waypoint follower
and a new position keeping algorithm were tested (Viel et al., 2018) with each sending commands at 10Hz.
Some results are shown in Figure 5, where the sailboats are shown in the left two figures while the right
two figures show the potential field method and way-point following control, respectively. The result figures
show the GPS trajectory of the sailboats recorded through ROS in a rosbag. These primary test results have
confirmed the feasibility and the functionality of the current hardware and software design in terms of accessibility,
generality and extendability. The sailboats were able to follow the commands from the high-level controllers on
the Raspberry Pi. For the potential field test, only an attractive goal point was put. The test was stopped and
retrieved using the RC controller at the middle of the test in the bottom of the picture for emergency reasons.
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Concerning the waypoint following controller, we put 3 different GPS coordinates to follow, shown in green in
the picture. The boat was able to use a tack strategy to reach the first point at the bottom of the figure and
then attain the other two GPS points. It went on to the first GPS coordinate again before we collected the
boat. While the results show a sub-optimal route to get to the waypoints, it shows nonetheless the feasibility of
such a control box, configured easily to apply controllers to the sailboat. After examinations of the test results,
the navigation problem on the waypoint-follower was due to a mechanical fault of the sailboat, constraining a
maximum rudder angle on one side.

Figure 5: Sailboats with the control box and test results.

6 Conclusion

We have demonstrated the development and the test of an open source autonomous sailing robot with emphasis
on its accessibility, generality and extendability. The hardware architecture is designed to accept most common
sensors and communication protocols. It is made of accessible and economic products and a customized PCB
board. The software architecture is designed to comply with the hardware by being generic and extensible.
The goal is to create a platform of autonomous sailing robots for generic education and research purpose. This
platform can also be beneficial for other relevant researches. Future work will focus on making the whole system
more robust, economic and smaller while maintaining the same level of accessibility. It will also be tested on
other formats of sailing robots such as catamarans and trimarans. The research will be shared along the work
progresses and more control algorithms for various autonomous missions such as area scanning and obstacle
avoidance will be implemented on it in the future work.
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Cabrera-Gámez, J. et al. (2013). An embedded low-power control system for autonomous sailboats. In Robotic
Sailing.

Cousins, S. (2011). Exponential growth of ros [ros topics]. Robotics & Automation Magazine, IEEE.

Cruz, N. A. and Alves, J. C. (2008). Autonomous sailboats: An emerging technology for ocean sampling and
surveillance. In OCEANS.

ROBOTIC SAILING 2018

18



Domı́nguez-Brito, A. C. et al. (2015). A-tirma g2: An oceanic autonomous sailboat. In Robotic Sailing.

Elkady, A. and Sobh, T. (2012). Robotics middleware: A comprehensive literature survey and attribute-based
bibliography. Journal of Robotics.

Ghani, M. H. and Hole, a. o. (2014). The sailbuoy remotely-controlled unmanned vessel: Measurements of
near surface temperature, salinity and oxygen concentration in the northern gulf of mexico. Methods in
Oceanography, 10:104–121.

Gregory, J. (2014). Game engine architecture. AK Peters/CRC Press.

Jaulin, L. and Le Bars, F. (2012). A simple controller for line following of sailboats. In Robotic Sailing 2012.

Krauss, R. (2016). Combining raspberry pi and arduino to form a low-cost, real-time autonomous vehicle
platform. In ACC.

Lam, T. L. et al. (2016). System design and control of a sail-based autonomous surface vehicle. In ROBIO, pages
1034–1039.

Larabel, M. (2018). Raspberry pi 3 benchmark. https://goo.gl/LkDz46. Accessed: 01/06/2018.

Lazarin, N. M. and Pantoja, C. E. (2015). A robotic-agent platform for embedding software agents using
raspberry pi and arduino boards. 9th Software Agents, Environments and Applications School.

Liu, Z. X. et al. (2016). Unmanned surface vehicles.: An overview of developments and challenges. Annual
Reviews in Control.

Marlin. Open source 3d printer firmware. http://marlinfw.org/. Accessed: 01/06/2018.

Meinig, C. et al. (2015). The use of saildrones to examine spring conditions in the bering sea: Vehicle specification
and mission performance. In OCEANS 2015 - MTS/IEEE Washington, pages 1–6.

Miller, P. et al. (2014). MaxiMOOP: A Multi-Role, Low Cost and Small Sailing Robot Platform.

Naveau, M. et al. (2013). Marius project: Design of a sail robot for oceanographic missions.

Neal, M. (2006). A hardware proof of concept of a sailing robot for ocean observation. Ieee Journal of Oceanic
Engineering.

O’Hara, W. J. (2017). ASTERiaS: Autonomous Sailboat for Titan Exploration and Reconnaissance of Ligeia
Sea. In Lunar and Planetary Science Conference, Lunar and Planetary Science Conference.

Petres, C. et al. (2012). A potential field approach for reactive navigation of autonomous sailboats. Robotics and
Autonomous Systems.

Plumet, F. et al. (2015). Toward an autonomous sailing boat. Ieee Journal of Oceanic Engineering.

Rathour, S. S. et al. (2017). Development of a Robotic Floating Buoy for Autonomously Tracking Oil Slicks
Drifting on the Sea Surface (SOTAB-II): Experimental Results.

Rules, R. (2013). Rules for roar racing. https://goo.gl/2XjucQ. Accessed: 01/06/2018.

Sailboat, P. (2018). Open-source source code and documentation of the plymouth sailboat project. https:

//github.com/Plymouth-Sailboat. Accessed: 01/06/2018.

Santana-Jorge, F. J. et al. (2017). A component-based c++ communication middleware for an autonomous
robotic sailboat. In Øverg̊ard, K. I., editor, Robotic Sailing.

Silva Junior, A. G. et al. (2016). Towards a real-time embedded system for water monitoring installed in a
robotic sailboat. Sensors (Basel).

Viel, C., Vautier, U., et al. (2018). Position keeping control of an autonomous sailboat. In Proceedings of the
11th IFAC CAMS 2018.

Wirz, J. et al. (2015). Aeolus, the eth autonomous model sailboat. In Friebe, A. and Haug, F., editors, Robotic
Sailing.

Vessel Development & Modelling

19



20



Peruagus - a Transatlantic Autonomous Surface Vessel
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Elettra Ganoulis Adam Alcantara Julian Niedermaier Robert Winn
Nicholas Jones Antonio Mazzone Tur James Blake Nicholas Townsend

The University of Southampton

Abstract

The Microtransat Challenge is a (friendly) transatlantic, unmanned
boat race, aimed to stimulate the development of autonomous boats.
Since the first transatlantic Microtransat race in 2010 there have
been over 20 entries and no successful crossings in all classes (sailing,
non sailing), divisions (autonomous, unmanned) and routes (East to
West, West to East). This paper presents the design and development
of Peruagus, the University of Southampton 2018 Microtransat
transatlantic autonomous surface vessel entry. Peruagus, meaning
Globetrotter in Latin, was developed as part of a final year group
design project at the University of Southampton. The design of the
vessel (a mono-hull, self righting, solar powered vessel) including the
system architecture, hull design, propulsion, steering, power and con-
trol systems and experimental results from a series of self propulsion
tests, sea-keeping tests and autonomous operations are presented. The
results demonstrate that the vessel is able to self right, propel itself
with low power and operate autonomously over a range of conditions.
In addition, performance predictions are presented and based on a fault
tree analysis the vessel is currently predicted to have a 60% chance
of success. The vessel is planned to be launched in the summer of 2018.

1 Introduction

1.1 The Microtransat Competition

The Microtransat Challenge, a transatlantic unmanned boat race (Figure 1), aims to stimulate the development
of autonomous boats through friendly competition. The competition, first conceived by Mark Neal (Aberystwyth
University) and Yves Briere (ISAE) in 2005, was first attempted in 2010 by Pita from Aberystwyth University
(Microtransat, 2018a). Since the first transatlantic Microtransat race in 2010 there have been over 20 entries.
Although the challenge is simple; autonomously travel either between Europe and the Caribbean (east to west
route) or North America and Ireland (west to east route) in the fastest possible time, as of writing there have
been no successful crossings in all classes (sailing/non sailing), divisions (autonomous/unmanned) and routes
(East to West/West to East).
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Figure 1: The Microtransat Challenge ((a) West to East route (blue), (b) East to West route (red)).

A breakdown of entries by class and division and failures is given in Table 1. The majority of entries are in
the sailing class (using wind as their propulsion power) and entered in the autonomous division. Reviewing the
known failures, the technical failures primarily relate to issues of reliability - surviving in the harsh environment
for a prolonged period of time. While the non-technical failures relate to route hazards - fishing grounds, shipping
lanes and the Sargasso Sea (an ocean gyre off the coast of northern America and the Caribbean characterised
by brown seaweed, which creates obstacles for the vessel).

Sailing Class Non-Sailing class
Only wind power can be used for propulsion,
overall length (LOA) restricted to a maximum
of 2.4m

Any type of propulsion can be used,
overall length (LOA) restricted to a
maximum of 2.4m

Autonomous (Division)
No interaction between the team and
the vessel, only publicly available data
can be received by the vessel (i.e. no
waypoint changes

Pinta, Snoopy Sloop 10, Snoopy Sloop 11,
Breizh Tigress, Opentransat Erwan 1, Aboat
Time, Trawler Bait, Phil’s Boat, Breizh Spirit,
Breizh Spirit DCNS, Snoopy Sloop 8, Snoopy
Sloop 9, That’ll do

That’ll do two (Epsom College Entry)

Unmanned (Division)
Data can be sent to the boat, including
course changes

Gortobot V2, SB-wave

Table 1: Summary of Microtransat classes, divisions and failures by vessel name. (Italics denotes a non-technical
failure e.g., picked up by fishing vessel, Underline denotes technical failure e.g., position report failure, unmarked
denotes unknown or sailed into land). Data from (Microtransat, 2018b)

Furthermore, considering vessel size and performance (time sailed and distance covered) there are no apparent
trends, Figure 2. Neither is there a clear improvement in performance over the years the competition has been
running, although this can be attributed to the small dataset and difficulty of the challenge. In this regard it is
hoped this paper will provide a valuable insight for new teams and entires in the Microtransat.

Figure 2: Comparisons of previous Mircotransat Entries ((a) Length/beam ratio versus distance and time sailed
(b) Year versus distance and time sailed)
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1.2 The Peruagus Project

Peruagus, meaning Globetrotter in Latin, is the University of Southampton 2018 Microtransat transatlantic
autonomous surface vessel entry. The Peruagus project was a final year engineering group design project at the
University of Southampton. The group design projects (GDPs) at the University of Southampton (University
of Southampton, 2018) aim to provide students with the opportunity to demonstrate their knowledge and skills,
gained during their degree, to a ‘grand’ engineering design challenge. In this regard competitions can be used
to great effect, as reported by (Telegraph, 2016) and exemplified by Xprize (Xprize, 2018), Eurobot (Eurobot,
2018), formula student (IMechE, 2018) and maritime engineering related competitions including the World
Robotic Sailing Championships (WRSC, 2018) and the International HydroContest(Hydros Foundation, 2018).
In particular, the Microtransat competition has provided a multi-faceted, challenging, motivational, open-ended
engineering problem. This has enabled students to demonstrate and integrate knowledge acquired from across
their programs but also provided the opportunity to interact and contribute to an international community.

The aim of the Peruagus project is to design and develop a vessel to cross the Atlantic, as part of the Micro-
transat Challenge. Since the vessel is required to operate unmanned and travel for several months autonomously
without maintenance and with all previous attempts unsuccessful, a failure analysis approach was used to guide
the design of Peruagus, focusing on reliability (minimising the probability of system and subsystem failures to
maximise the chances of success).

1.3 Contribution and Paper Structure

In this paper, the design of Peruagus, a mono-hull, self righting, solar powered vessel, is presented. The system
architecture, hull design, propulsion, steering, power and control systems are detailed in Section 2, including
experimental results from a series of self propulsion tests, sea-keeping tests and autonomous operations. The
final vessel design, targeting the Mircotransat non-sailing class, autonomous division (with the possibility to
convert to unmanned) following an east-west route, is presented in Section 3 and performance predictions are
presented in Section 4.

2 Peruagus Vessel Design

2.1 System Architecture

An overview of Peruagus system architecture is given in Figure 3. The electrical system is split into a pair
of redundant circuits, each comprising of a 100W solar panel made up of SunPower cells, a Victron BlueSolar
MPPT charge controller, a battery bank (2 x 480Wh lithium-ion batteries), control relays and a step down
voltage converter. The solar/battery bank (12-14V) provides power to the drive motors, steering actuators, the
navigation light and the bilge pump. A step-down voltage converter (also powered from the solar/battery bank)
then provides a regulated 5.6V supply for the on-board control systems, including;

1. The navigation controller (Pixhawk), which acts as the navigation controller, and manages the power dis-
tribution and makes decisions based upon the condition monitoring sensors

2. The satellite modem (RockBLOCK+) which transmits telemetry and location data every 6 hours using the
Iridium network

3. The microcontroller (Teensy 3.5), which provides data acquisition, processing, logging and (I2C) communi-
cation with the navigation controller.

Figure 3: Overview of Peruagus Architecture
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2.2 Hull Design

To house all the systems a mono-hull, self righting, solar powered vessel with passive keel cooling was developed.
The hullform, as shown in Figure 4, was made of a double skinned foam core (Celotex PIR wall insulation foam,
milled from a foam block using a CNC machine) with E-glass (290g/m2 with 100g/m2 finish) infused with EL2
epoxy resin. The foam thickness has a total volume of approximately 100kg displacement. This ensures that if
there is water ingress and the compartment becomes flooded the vessel will maintain positive buoyancy. The
propeller shafts were also angled at 15 degrees, to ensure the stern tubes ends were above the waterline such
that in the event of a seal failure water would not flood the boat.

Figure 4: Peruagus hullform

2.2.1 Stability

Given the slender form, solar panel requirements and potentially severe sea-states, Peruagus was designed to
be self righting and remain self righting in the event of damage and flooding. This was achieved with a keel,
watertight compartments and an asymmetric superstructure. The keel (NACA0010 section) was made from PET
plastic, housing 16kg of lead ingots constructed around an aluminum frame. The GZ curves for the intact vessel
and damaged vessel are given in Figure 5.

Figure 5: Peruagus GZ stability curves ((a) Intact (b) Damaged)

2.2.2 Seakeeping

To assess the seakeeping performance of Peruagus a series of observational experiments were performed in the
University of Southampton towing tank, including a worse case scenario when the wave length was equal to the
LBP, Figure 6. As the vessel is unmanned and the limiting factor for seakeeping performance is the tolerance
of the electronics, this approach which does not necessitate the testing of every possible sea-state that may be
encountered, significantly reduced the number of tests required. The results, Figure 6, show that the accelerations
experienced by the vessel are within tolerance of all electrical systems. For example, the most sensitive system
onboard, the GPS, is rated to withstand up to 4G acceleration. While the wave height is limited in the towing
tank, these tests provided confidence in the seakeeping performance of the vessel.
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Figure 6: Peruagus Seakeeping ((a) Image of test, (b) Heave acceleration and velocity recorded using an IMU)

2.3 Propulsion System

Propulsion was achieved with two inwards rotating propellers, providing (if necessary) differential thrust for
steering in the event of a rudder malfunction. To establish the resistance and estimate the required propulsion
power for the hull, the viscous resistance was estimated using the ITTC 1957 correlation line (Molland et al., 2017)
with a form factor identified from CFD simulations (using ANSYS Fluent) and the wave resistance coefficients
were determined using Maxsurf resistance Slender Body Analysis (assuming Peruagus can be regarded as a fully
displacement traditionally shaped vessel). The results are shown in Figure 7. The power estimates were made
assuming the following efficiencies; Propeller Angle Efficiency 96.59%, Propeller Efficiency 60%, Transmission
Efficiency 95% and a Weather and Fouling Margin 30%. Based on the results, a 140W design specification was
considered (enabling a nominal 45-55W ‘cruise’ operation and ‘sprint’ ability to maintain progress in adverse
conditions or in the event of an engine, belt, shaft or propeller failure).

Figure 7: Estimated resistance (a) and power (b) over a range of speeds

2.3.1 Drive System

A pair of brushless hobby-grade (Turnigy DST-700kv, 12V ) motors were selected for propulsion. With a nominal
no load speed of 8,400rpm (12V), a 1:4.4 geared belt drive system was implemented to provide the propeller
design speed of 650-800rpm. To check the longevity of the motor and controller, the motor was run for over 3000
hours, with an applied load (an airscrew), cycling between cruise (20-40% throttle) and sprint throttle levels to
provide a representative load cycle. Although, an increase in bearing noise was noted, the motor and controller
ran without fault with no notable increase in power consumption, providing confidence in the selected drive
system.

2.3.2 Propeller Selection

The propeller selection was based on an experimental investigation of 4, 5 and 6 bladed Wageningen B-series
propellers (Van Lammeren et al., 1969) (readily available brass model boat propellers designed to operate at
750 rpm at 1.5knots). The 4, 5 and 6 bladed propellers were 3D printed (for the experiments) in high density
ABS and vessel speed, power (current drawn) and rpm, over a range of throttle settings, in the University of
Southampton Boldrewood towing tank, were recorded, Figure 8. Based on the results, Figure 9, the five bladed
propeller was selected. The results show a slight discrepancy between the theoretical estimates (see section 2.3)
where an installed power requirement of 8.07W at 1.5knots ‘cruise’ speed (0.77m/s, Fn0.168, 4.43N resistance,
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4.58N thrust), and installed power requirement of 80.8W at 3.0knots ‘sprint’ speed (1.54m/s, Fn0.336, 22.18N
resistance, 22.96N thrust) was calculated.

Figure 8: 3D printed propeller (design, manufacture, assembly, testing)

According to the results of the self-propulsion tests, the motors operate at approximately 40% (each) at normal
cruise speed, drawing a total of 48W. One motor was found to push the vessel at a maximum speed of 2 knots at
full applied power (drawing approximately 80W). While both motors operating at full applied power, produced
a speed of just below 3 knots (drawing 160W total). Based on the results the boat is intended to be operated
for the majority of journey at ‘cruise’ power (45-55W continuous input), with the ability to ‘Sprint’ to maintain
progress when encountering tidal streams, current, or heavy weather.

Figure 9: Propeller test results ((a) Power (b) RPM)

2.4 Steering System

To steer the vessel a doubly redundant system was developed with two linearly actuated control surfaces (rudders)
and two inwards rotating propellers (if necessary in the event of rudder failure) providing differential thrust. The
rudders were designed to manoeuvre the vessel and, in case of a propulsion failure, counteract the moment
produced by a single, one-sided propeller. This approach was adopted, based on advice provided by ASV Global
Ltd and on the main causes of failure of small ocean going craft; failed rudder servos (e.g., from salt water
seizing the electronics or strong forces damaging the actuator) (Microtransat, 2018b) and complete rudder loss
(Seacharger, 2018). In addition, linear actuators also have the added advantage that they can hold their position
without the need for power.

2.5 System Power

To power Peruagus an asymmetric superstructure solar battery charging system was implemented. Since
the transat is in the northern hemisphere and one way - east to west, the asymmetric superstructure max-
imises the incident solar energy and additionally aids in self righting (with a tendency to right itself to
starboard). In total two 100W (18V) Mono-crystalline solar panels (η = 23.5%), were selected and wired
in parallel, with each panel charging two Lithium Ion batteries (12V, 3S 40Ah) (with a Victron solar con-
troller and built-in profile for Lithium Ion cells; lower voltage cutoff of ≈ 8.5V and a maximum voltage of 12.6V).

2.6 System Control

The control system is based on the Ardupilot Rover, using GPS to steer the vessel between waypoints as shown
in Figure 11. A major modification to the Ardupilot Rover basis firmware is the addition of the Director, which
acts as a proxy between the autopilot and the physical hardware. The autopilot code sends a desired throttle
and steering value to the Director. The Director, which continually monitors the vessel to detect failures, then
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drives the motors and rudders accordingly (given the system status) following prescribed rules. In addition,
the Director also monitors longer term navigational performance e.g., IMU data to detect the severity of boat
motions, ability to maintain headway, capsize events and system failures. This data can be reported to the shore
base and actions including; adding/changing waypoints, overriding autopilot decisions on failure, change the
data sent in the status message, request a full diagnostic to be sent (multiple messages), manually set throttle
or steering angles, switch to drift/loiter mode and conduct a reverse 360, can be taken. Meaning that, in the
event of an unforeseen failure there is the possibility to convert to the unmanned division. Although, the ‘rules’
or thresholds remain to be finalised, initial tests have been conducted to provide confidence in the control, with
Peruagus run autonomously for an hour tracking between waypoints in a local lake.

3 Final Peruagus Design

The final Peruagus design is presented in Figure 10 and Table 2.

Figure 10: Peruagus General Arrangment

HULL PARAMETERS
Length (LOA, LWL) 2.2m, 2.158m
Beam (WL, Max) 0.475m, 0.58m
Draft at FP (at AP) 0.162m (0.14m)
Displacement 80.4kg
Block Coefficient, CB 0.454
LCB, LCF, GMt, Trim 1.16m, 1.071m, 0.167m, -0.021m
PROPULSION SYSTEM
Propellers 2× 5-bladed Raboesch M5 propellers, 110mm diameter
Propeller drive 2× Model DST-700, 140W, 700RPM/volt, brushless
STEERING SYSTEM
Rudder Shape NACA0015 (widened near the stock)
Rudder Material Acrylonitrile Butadiene Styrene (ABS) and Epoxy
Rudder Area 0.014m2

Mean Chord, Span, Sweep 0.10m, 0.14m, 20o

Aspect Ratio 1.4
SYSTEM POWER
Solar Panels 2× 100W (18V), Monocrystalline, 1050mm x 540mm x 2.5mm, η = 23.5%
Batteries 4× 480WH, 12V (Nominal) Lithium Ion (3S 40Ah), rated discharge 40A,

rated charge 10A, 12.50kg (total)
CONTROL SYSTEM
Navigation Controller Pixhawk
Satellite Modem RockBLOCK
Microcontroller Teensy 3.5

Table 2: Peruagus particulars
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4 The Peruagus Entry

4.1 Vessel Route

Peruagus is planned to be entered into the Mircotransat non-sailing class, autonomous division (with the
possibility to convert to unmanned in the event of a required interaction) following an east-west route.
To minimise the probability of failure the planned route (as much as practically possible) avoids fishing
grounds, shipping lanes and the Sargasso Sea, Figure 11. Although, the east-west route is longer and
arguably more challenging, with a 91% probability that one hurricane will be encountered in the course of
the transit (NOAA, 2018), it is practical for a UK team and the average wind and waves directions are favourable.

Figure 11: Peruagus Route

4.2 Estimated Duration

Using the Haversine formula (Mwemezi and Huang, 2011) to calculate the distances between the planned
waypoints (latitude,longitude) and assuming a constant ‘cruise’ speed of 1.5knots (55W), the total journey is
expected to take around 16 weeks, Table 3. Although neglecting the influence of any current, wind and waves,
these estimates will enable a comparison with the actual performance and potentially highlight performance
issues on route.

Waypoints Latitude
(N)

Longitude
(W)

Distance
(km)

Propulsion Energy
(MJ)

Duration
(Weeks)

Southampton 50.91o 1.40o

Waypoint 1 48.50o 8.50o 565.24 40.3746 1.2138
Waypoint 2 43.50o 13.50o 667.05 47.6461 1.4324
Waypoint 3 38.50o 13.50o 555.97 39.7125 1.1939
Waypoint 4 33.50o 19.50o 762.88 54.4911 1.6381
Waypoint 5 24.50o 24.50o 1103.31 78.8080 2.3692
Waypoint 6 22.00o 30.50o 667.76 47.6972 1.4339
Finish line 23.20o 60.00o 3039.62 217.1155 6.5270

TOTALS 7361.83 525.8451 15.8082

Table 3: Peruagus estimates (assuming a constant cruise speed of 1.5knots at 55W)

4.3 Probability of Success

To determine the probability of success a deductive failure analysis in the form of a fault tree was conducted,
as illustrated in Figure 12. Over 200 identified events (each representing a possible cause of failure of one of the
vessels systems) were identified and probabilities of failure assigned. The probabilities were based on the test
results, available literature, however, some probabilities were difficult to quantify and estimates were made. The
final analysis estimated the probability of success at approximately 60%.

Given the history of the competition this figure seems reasonable, however it is important to note that
there is a degree of uncertainty associated with this number. For example, the largest contribution to
vessel failure (18%) is attributed to the inability of the Pixhawk (and the vessels operating code) to handle
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Figure 12: Example branch of the fault tree analysis

an event not part of the vessels normal operation and the lack of code specifically designed to handle the
event. Since the probability of such an event is unknown, this is a subjective estimate by the team. Al-
though subjective, this approach does provide a means to quantify the probability of success and, more usefully,
to enable designs to be compared and developed with a quantifiable metric to maximize the probability of success.

5 Conclusion

This paper presented the design of the Peruagus, the University of Southampton 2018 Microtransat transatlantic
autonomous surface vessel entry. The final vessel design is presented, including the system architecture, hull
design, propulsion, steering, power and control systems. Experimental results are presented demonstrating that
the vessel is able to self right, propel itself with low power and operate autonomously over a range of conditions.
Furthermore, performance predictions are presented and based on a fault tree analysis the vessel is currently
predicted to have a 60% chance of success. The vessel, a mono-hull, self righting, solar powered vessel is planned
to be launched in 2018, in the Mircotransat non-sailing class, autonomous division, following an east-west route.
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Abstract

Sailing without any human intervention generates a great fascination,
since it is challenging while enabling many opportunities. Moving with-
out external energy supply, possibly transporting goods, collecting plas-
tic waste or recording scienti�c measurement data, new attractive sce-
narios become possible. As �rst milestone, we aim to send a robotic
sailboat across the Atlantic ocean, coping with bad weather including
storms, other vessels or �oating waste.

For testing, designing control, sophisticated route planning, and man-
aging algorithms, we are interested in di�erential equations for a sim-
ulation model. Therefore, we theoretically derive relations, describing
the sailboat motion as those of a rigid body having six degrees of free-
dom (6 DOF). This allows us to reproduce signi�cant nonlinear e�ects
like the ones created by �ow separation, speed dependence of the dy-
namics and oscillations by waves, while maintaining a comprehensible
structure of the external forces of the sailboat. In contrast to standard
velocity prediction programs (VPP), we are interested in the actual
dynamical behavior, the e�ect of sail angles, rudder and waves while
the precise prediction of the actual reachable velocities are of minor
interest.

The dynamic model can serve for controller design and for the genera-
tion of test data. Additionally, it is used to feed a hardware model of
our boat, providing an intuitive way of demonstrating the boat move-
ments.

1 Introduction

For large parts of the oceans, accurate measurements of the environment are missing. More detailed data would
bene�t climate research and environment monitoring. A way to perform the ocean sensing is the usage of
autonomous sailing boats. This reduces the cost of the required hardware from a big research vessel to a small
boat and eliminates personnel costs as there is no crew on the ship. Further use cases are the collection of trash
and cheap, energy e�cient transportation of goods.

These long term missions through rough weather conditions require a high con�dence in the hardware of the
boat and in the algorithms. Therefore, a way to test the implemented controller is required. In this paper,
we present a simulator to provide a basis for testing our developed algorithms and systems of an autonomous
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sailboat. This allows a short development cycle with fast feedback without the need to use a real boat. The
focus is on a six degrees of freedom (6 DOF) model for a sailing boat. It is used for simulating the dynamic
boat movement. Further it is important for controller design and a test pattern generator for the whole software
architecture as well as for visualization purposes.

1.1 Related work

For modeling the dynamics of motorized vessels there is rich literature, e.g. (Fossen, 2005), however for wind
propulsion, special e�ects have to be considered. The speci�cs of sailing are treated in models for yachts (Philpott
et al., 1993) in the development of Velocity Prediction Programs (VPP). However, they aim to optimize the race
performance and therefore focus on the achievable speed, while we are interested in the dynamic motion e�ects.
Dynamic models for sailing vessels are derived in (Saoud et al., 2013), (Alves, 2010), (Masuyama and Fukasawa,
2011) and (Roncin and Kobus, 2004). However, (Masuyama and Fukasawa, 2011) concentrates on tacking,
(Saoud et al., 2013) and (Alves, 2010) reduce the model to 3 DOF, neglecting the in�uence of roll and waves.
(Roncin and Kobus, 2004) relies on the identi�cation of a larger set of parameters based on experiments for which
we would need a setup respectively CFD model. In contrast, we outline a 6 DOF model including wave e�ects
while transparently formulating the acting forces using fewer parameters to obtain a rich but comprehensible
simulation setting.

1.2 Assumptions

For our model, we take several assumptions. First, we neglect the change of the wind over the height and assume
a constant wind speed as well as angle over the whole sail. A similar assumption is made for the lateral parts
and the water speed. Also the interference between both sails is neglected. Each sail will change the wind locally
which will have e�ects on the other sails. Instead, lift and drag coe�cients of the sails are approximated by
the results of thin airfoil theory, which additionally neglects the shape change of the sail. The �ow separation
is estimated in a simple model interpolating between unseparated and fully separated �ow. For the waves, it is
assumed, that the wave length is large compared to the ship length.

2 Mathematical model of the boat movement

To simulate the movement of the sailboat, we need a model in the form of di�erential equations, describing the
temporal relations of external forces acting on the sailboat through dynamic and kinematic relations. For our use
case, we are interested in a rich but comprehensible model, covering important e�ects of the sailboat's motion.

We model the dynamics and kinematics for a 6 DOF boat model, that depend on the geometries and inertia. A
sailboat operates at the boundary between two media, water and air and uses speed di�erences to move forward.
As important forces, we derive equations for the following components:

• sail, keel and rudder force

• buoyancy forces including e�ects from ocean waves

• wave resistance

• damping forces

2.1 Dynamics and kinematics

The dynamics describe how the forces acts on the boat speeds and turn rates due to the boat inertia. It is wise
to derive the relations of forces and dynamics in di�erent reference frames, that are connected through kinematic
relations, see also Figure 1.

We describe the position xg, yg, zg and heading ψ of the boat in our globally �xed or navigational frame, with
z = 0 at the undisturbed water surface.

At the center of gravity of the boat, we locate the second, the heading frame, also parallel to the water surface
with x axis in heading direction. The transformation from the global frame consists of the translation of position
(xg, yg, zg) and rotation according to heading ψ. In this heading frame, we formulate the buoyancy Fhs, the
translation dynamics (change of speeds vx, vy, vz) and the wave resistance Fwr. The basis vectors in the heading
frame are denoted by {ex, ey, ez}.
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Figure 1: Top view (a) and rear view (b): Forces of sail(s) Fae, keel Fhy and buoyancy Fhs. Position (xg, yg, z)
and heading ψ is measured in a global frame, buoyancy and lateral dynamics in a frame centered at the ship but
oriented to the water surface, and the angular dynamics in a ship oriented coordinate frame. The aerodynamic
angle of attack αae results from sail angle γ and apparent wind direction βWA = γ + αae, hydrodynamic αhy
from the leeway drift and water stream.

The third frame is the body frame, �xed to the boat main axes. Here, it is intuitive to describe the rotational
dynamics, sail, rudder and keel forces. The transformation from the heading frame is achieved by rotating due
to roll angle ϕ, while the pitch angle θ is often negligible small. The basis vectors of this frame, we denote as
{e1, e2, e3}.

Altogether, we have 12 states, the translations xg, yg, zg, heading ψ, roll ϕ and pitch θ and the change rates
in positions vx, vy, vz and angles p, q, r, where v = vxex + vyey + vzez is the speed at center of gravity and
Ω = pe1 + qe2 + re3 the angular velocity.

From the kinematics, we obtain the �rst part of di�erential equations, the position (ground based) changes
according to heading and speeds,

d

dt



xg
yg
z


 =



vx cos(ψ)− vy sin(ψ)
vx sin(ψ) + vy cos(ψ)

vz


 . (1)

Similar holds for the angles, where it is used, that the pitch angle is small.

d

dt



ϕ
θ
ψ


 ≈




p
cos(ϕ)q − sin(ϕ)r
cos(ϕ)r + sin(ϕ)q


 (2)

The speed and angular rates change due to forces and moments according to the dynamic equations. The boat
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speed change due to overall applied forces F and boat mass m,

m
d

dt
v = F. (3)

For the left side we need to respect the angular velocity of the heading frame, the change of heading, m d
dtv =

m((v̇x − ψ̇vy)ex + (v̇y + ψ̇vx)ey + v̇zez).
When the boat accelerates, surrounding water is accelerated, resulting in a transient hydrodynamic force that

is usually modeled as an added mass. Additionally, this e�ect introduces cross terms, coupling roll and sway. We
plan to include added masses soon in our description, since they have an important in�uence, especially for roll
motion (Korotkin, 2009). Therefore, (3) and (4) have to be slightly adapted to include the coupling of inertia.

For the angular velocities, we have the relation of the angular momentum ΘΩ and overall torque T,

d

dt
(ΘΩ) = T =

∑

i

ri × Fi, (4)

where Θ is the angular inertia, Ω the angular rate vector and ri the vector from center of gravity to the ith force
point of application. Due to approximate symmetries of the boat, the principal inertia axes do coincide with the
boat main axes, leading to a diagonal inertia Θ (apart from added masses). For the derivative, it is important
to respect, that the ship itself is moving and the ship based coordinate frame itself has to be di�erentiated,
d
dt (ΘΩ) = ṗΘ1e1 + q̇Θ2e2 + ṙΘ3e3 + Ω×ΘΩ. The formulation in ship based coordinates is however necessary
to avoid a full and time dependent inertia matrix.

In the following we derive equations for the force components describing the motion of the sailboat, needed
for equations (3) and (4).

For the aero and hydrodynamics, we have to di�er apparent wind (stream) and the true wind (stream). The
true wind is the wind referred to the ground, that is equal for all vessels at a given position. For the hydro-
and aerodynamic forces, the relative �ow is relevant, meaning that the ship speed has to be subtracted from the
absolute. Hence the apparent or relative wind (and water �ow) is calculated as the vectorial sum of the true
wind (water stream) and the negative boat velocity. With raising boat velocity, the apparent wind changes its
directions towards coming from ahead with varying strength. Additionally, the rotation of the boat changes the
relative �ow on the foils. Therefore, we chose the point of load rfoil of the foil and assume constant �ow speed
over the whole foil (which seems to be �ne for not too large rotation rate). The relative velocity is calculated as
vrel = vflow − v − Ω× rfoil. For the rudder this might be problematic due to the nearby keel but this remains
for further re�nement.

2.2 Sails and lateral foils

A main impact results from the sails and lateral plans, keel and rudder. Both, we model analog as ideal foils in
a �uid stream. We calculate the resulting �uid forces based on results from theoretical aerodynamics, providing
equations for lift and drag forces and the points of attack.

In di�erence to a hard foil where the actual shape is �xed, the shape of a sail varies according to load and
design. However, we want to stay at a simple description combined with fast computation and neglect these
e�ects.

2.2.1 Lift and drag

Lateral foils and sails are placed in a �uid stream that reaches them under a speci�c angle of attack α. For the
keel, this is the relative angle of the water �ow. For the sails, the apparent wind angle is referred to the sail
angle γ (see Figure 1).

For the forces, we use the results from theoretical aerodynamics of thin foils leading to the relation for the lift
coe�cient as

cL = cL,0 + cL,αα, (5)

where cL,0 is the lift coe�cient at zero angle of attack that is zero for a symmetric foil, and for thin foils a
theoretic value of the slope coe�cient of cL,α = 2π is known (while neglecting the foil shape) (Spurk and Aksel,
2010).
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The drag force of a foil consists of di�erent components: Friction at the surface, induced drag due to �nite
foil height and pressure loss when it comes to �ow separation that we treat later. At small angles of attack, the
drag coe�cient is

cD = cf + cD,i. (6)

The induced drag depends quadratically on the lift coe�cient cD,i = c2L/(πΛ) with the geometric foil stretching
Λ, height h and area A. The theoretical friction coe�cient of a plate in laminar �ow is cf = 2.66/

√
Rel (Spurk

and Aksel, 2010), where Rel = vl
ν is the Reynolds number with length l of the plate in direction of the �ow and

ν is the kinematic �uid viscosity.
With drag and lift coe�cients we can calculate the forces by multiplying the dynamic pressure q = 0.5ρv2rel

and the area A,

Fflow = qA [(sin(βWA)cL − cos(βWA)cD)e1 − (sin(βWA)cD + cos(βWA)cL)e2] , (7)

that is transformed to the ship based frame according to the relative �ow angle βWA.
The point where the aerodynamic force acts, is for the �at symmetric wing at one forth length, but varies until

one third for asymmetric shapes where the location depends on the angle of attack (Spurk and Aksel, 2010).

2.2.2 Flow separation

At larger angles of attack (e.g. sailing in front of the wind for the sail, departing from low speeds for the keel),
the �ow separates from the foil, the lift reduces and the drag by the pressure loss gains signi�cant in�uence.
In the extreme case of an angle of attack of 90 degrees, there is no lift (due to symmetries), while the drag
coe�cient is slightly above cD ≈ 1 and the point of attack is the center of the foil. At smaller angles, we model
the drag coe�cient as cD = sin(α)2 representing the dynamic pressure of the �ow perpendicular to the foil. For
most foil shapes, �ow separation leads to stall angles, the angle where cL is maximal, between 15 and 25 degree.
We interpolate between not separated case and �ow separation heuristically according to a separation factor
s = 1− exp

[
−(α/αsep)

2
]
and use a characteristic angle αsep = 25◦, resulting in a stall angle of 15◦.

2.3 Wave resistance

The velocity of a displacement vessel is limited by the wave resistance at maximum hull speed. This resistance
results from the waves generated by the ship movement. At about a Froude number of Fr = v/

√
glwl = 0.4, the

wave resistance reaches a local maximum that cannot be exceeded by our keel boat.
The maximum hull speed depends on the square root of the waterline length lwl of the ship vhull = 0.4

√
glwl,

resulting to a maximum speed for a 4m water line length of about 2.5m/s.
We approximate the wave drag by a 6th order polynomial introducing it as speed limiting factor, neglecting

the hull shape dependent interference e�ects and model the wave resistance according to

Fwr = − sign(vx)cwrqhyALK

(
vhy
vhull

)4

e1, (8)

with lateral area ALK and a wave resistance weight parameter cwr.

2.4 Hydrostatic buoyancy and wave in�uence

The hydrostatic force is central for the boat to �oat on the water and the moment stabilizes roll and pitch angles.
The hydrostatic bouyancy respectively Froude-Krylov force (Fossen, 2005) is the integrated water pressure

over the hull, also described as the weight of displaced water. For the calculation of the pressure, the virtual water
surface without the vessel has to be used. In calm water and zero speed, the hydrostatic force acts vertically
(along zg), compensating the vessels weight at the stationary point of �oating. With some elevation of the ship
zg or similarly an actual wave elevation η, the hydrostatic force Fhs is calculated as

Fhs ≈ mg + ρhygAW (η − zg), (9)

with gravity acceleration g, water density ρhy and the water plane area at equilibrium AW . The integration of
the waterline surface changes is neglected leading to the above linear relation.
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The point where the force acts depends on the height di�erence of the buoyancy point above the center of
gravity hhs,0 and the second moments of water plane area IL/T .

For the side shift, we get

rhs ≈ −
(ρhy
m
IL + hhs,0

)
sin(ϕeff )ey +

(ρhy
m
IT + hhs,0

)
sin(θeff )ex, (10)

again neglecting the change of the water plane due to roll and heave. The �rst part of each component respects
the stabilizing in�uence of the hull shape of the ship, the second the in�uence of the static deviation from the
center of gravity. The second moment of water plane area IT for the pitch movement is at a larger order than
IL for the roll movement due to the lengthiness of common boat shapes. Therefore, pitch angles stay small
especially in the absence of waves.

The e�ective hydrostatic roll angle has to be referred to the water surface including waves. With the wave

elevation �eld η(x, t) it becomes ϕeff = ϕ− arctan
(
∂η
∂y

)
and θeff = θ+ arctan

(
∂η
∂x

)
, where it is assumed, that

the wave length is large compared to the ship length (4m), which should be the case for o�shore ocean waves
with signi�cant amplitudes.

The buoyancy force changes the direction according to the water surface, and partially acts in horizontal
directions, again linearized to Fhs = Fhsez − Fhs ∂η∂xex − Fhs ∂η∂yey.

2.5 Damping

Lastly, we model linear constant damping of the boat, though the addition of a quadratic term will be more
appropriate. The used damping force and moment are

(
FD TD

)
= −d

(
v Ω

)
,where we use decoupled, rough

estimates for the damping parameters d.

2.6 Inputs

For a simulation, we have to specify all external variables like wind and waves as well as control variables, rudder
and sail angles. The �rst are part of the simulation environment, while the latter have to be chosen by a boat
controller.

For the rudder, a limitation (±35◦) is used. For the choice of the rudder angle, the �ow separation at high
angles of attack of the rudder has to be avoided or respected during controller design. For the sails, the possible
angle is geometrically restricted by shrouds (±90◦). A stronger constraint is imposed by the limited rate of
change for which we introduce a �rst order model in the next part. Additionally, for practical reasons of energy
management, the sail angle should not be changed too often. An adaption seems to be necessary mainly at
maneuvers and changes in heading and wind. In contrast, the rudder is important to control the heading and
reducing the impact of disturbances like waves or wind gusts. We choose a sample time of 100ms, but its value
may be adapted according to energy resources and control requirements.

2.6.1 Limited actuator speeds

It is not possible to set sail and rudder angles immediately, instead changing them requires time and energy.
The actuators have to change the rope length (sail) or the rudder position. To respect this in a simple way, we
chose a �rst order linear behavior determined by some time constant τ describing the typical time for the rudder
respectively sail to be set. This temporal behavior results from the actuator position controllers. Additionally,
the absolute change rate may be limited due to a maximum actuator speed.

The time constant of the rudder is assumed to be short (0.1 s), while for the sail we expect a larger time
constant due to hardware design (e.g. 3 s). For the sails, the actuation by ropes implies another e�ect: Its angle
can change very fast during jibing or tacking. It is rather the maximum absolute angle that is chosen by the
controller setting the length of the rope. The side respectively sign of the sail angle is chosen by the relative
wind.

2.7 Implementation and numeric integration of the di�erential equations

For the simulation, the di�erential equations of the dynamics model (1)-(4) have to be integrated departing from
the initial state values x0. Therefore we use the Dormand Prince method, a standard Runge-Kutta method with
adaptive step size. For a simulation time of 120 seconds, 2 seconds computation time is needed on 2GHz single
CPU computation.
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Figure 2: Boat accelerating from zero speed. For-
ward speed vx and leeway vy are both rising, until
the overall speed augments and the keel compen-
sates the side force. The high initial leeway drift
angle leads to �ow separation.
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Figure 3: Simulated ship trajectory: Gaining speed
tacking and jibing; boat starts at blue cross, wind
direction is marked by the green arrow.
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Figure 4: Speed of the boat in the di�erent direc-
tions: Horizontal speed is almost decoupled, hence
close to zero in the absence of waves.
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Figure 5: Same simulation scenario but with waves:
Ship speeds for a wave �eld with 1m wave height
at a wave length of 100m, arriving from right.

The implementation of our simulation setup is available at https://github.com/simko96/

stda-sailboat-simulator.

3 Simulation

The simulator should be able to reproduce main e�ects of the sailboat dynamics to deliver useful data for testing
software components like controllers or path planning. One interesting situation is the departure from zero speed,
where the e�ects of rudder and keel di�er from normal operation (here the inertia dominates). Other interesting
situations include state changes during maneuver execution and the in�uence of bigger waves. The simulation
serves as data generation to test our modules like heading controller, path planning or �lter algorithms. However,
so far we do not have empirical data to validate its performance. Instead we qualitatively examine for plausibility.

3.1 Scenario: gaining speed, tacking and jibing

Our scenario consists of the boat accelerating at departure from zero speed, while the wind comes from south
with 5m/ s (right angle to initial heading), followed by tack and jibe maneuvers (Figure 3). Therefore, we use a
feedback control for the heading through the rudder, that is derived from a simpli�ed nonlinear dynamics model
for the yaw motion, and a feed forward control of the sails.

The �rst part of the scenario is to gain speed (Figure 2). At departure, there is no water �ow which leads to
a high initial leeway (acceleration according to the sail force), and the starting �ow separates. While the boat
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Figure 6: Plot of the controlled heading angle, its
reference and the leeway drift angle compensated
by the controller.
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Figure 7: Corresponding angles in roll and pitch,
due to the high longitudinal stability (geometric
inertia), the pitch angle remains small.

speeds up, the keel force raises until it compensates for the side force of the sails.
At tacking, the speed reduces due to the missing propulsion when crossing the wind. Afterwards, the boat

speeds up at the new heading. For jibing, the speed decrease is less pronounced (Figure 4). During both
maneuvers, the roll angle changes the sign. The pitch angle remains negligible during the scenario (Figure 7)
and becomes larger but still small when introducing waves (not shown). The heading (controlled by use of the
rudder) is shown in Figure 6.

With waves of 1m height coming from east (−xg-direction), the base trajectory looks similar. Oscillations
induced by the waves are superposed on all states, exemplary shown for the speeds in Figure 5.

3.2 Visualization by hardware model

Figure 8: Demonstration model of a sailing boat.

Another application is the data generation for our
movable hardware model of the boat shape that
serves for demonstration and visualization issues
(Figure 8). It is eligible when presenting our project,
e.g. at fairs, and useful to test interfaces between
the di�erent components, software, electronics and
actuators.

4 Conclusion

In this paper, we derived the di�erential equations
describing the dynamics of a sailboat, by considering
the forces generated by both �uid �ows, wind and
the relative water stream.

This model is used, to simulate the sailboats mo-
tion, particularly for maneuvers like tacking or jib-
ing. The simulation results seem plausible and well
suitable for our demonstration model. Further, it is useful for testing our control and path planning algorithm.

However, we still need to record real data, to identify parameters like damping and compare and evaluate the
simulation quality.
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Backstepping Control of an Autonomous Catamaran Sailboat 

 
 
 
 
 

Abstract 

Automatic control of sailing boats has continuously evolved since it 
allows the increase of sailing safety and the improvement of cruise 
speed. Hence, the main problem with sailing resides in the large heel 
angle and important roll motion that can be caused by strong wind. 
In order to overtake these risks and to ameliorate the sailboat 
manoeuvrability and speed, a solution is to design sailboats with two 
or three hulls; referred, respectively, as catamaran and trimaran. This 
paper presents an autopilot design for an autonomous catamaran 
sailing vessel. A four degree of freedom dynamic model of the vehicle 

is firstly described using Newton’s second law and kinematic 
equations. Due to high nonlinearity of the mathematical dynamic 
model of the catamaran sailboat, a nonlinear heading controller based 
on backstepping method is developed to stabilize the boat heading 
while tracking waypoints. Finally, simulation results are carried out 
to show the effectiveness of the proposed approach and the behaviour 
of the overall system. 

 

1    Introduction 

Sailing is an efficient navigation technic that uses wind kinetic energy but little to no electric energy to 
navigate. Therefore, sailboats are well suited for long operations such as monitoring of maritime area, 

oceanographic research and Microtransat challenge (Brière, 2006). In this context, many autonomous sailboat 
projects have been launched throughout the world over the last decade such as the AVALON, the AROO and 
the FASt sailboats project (Erckens et al, 2010) (Neal, 2006) (Alves et al, 2008).  
The sailboat propulsion depends on the wind speed and direction. The sail is used to create forward propulsion 
for the sailing vessel. Depending on the polar diagram of the sailboat, there is an optimal sail angle that gives 
the highest forward linear speed but it can cause an important heel angle that decreases the boat stability and 
safety. Hence, we need an effective control of the sail and the rudder angle to reduce the roll motion.  Authors 
(Wille et al, 2016) developed a Linear Quadratic Regulator (LQR) for controlling the momentum created by 
the sail. This controller reduces the roll motion so, it increases robustness and safety. Another solution for 
reducing roll motion is to design catamaran sailboats. Due to its two hull the catamaran sailboat is more stable 
than the monohull sailboat.  

 
Figure 1: 3D printing catamaran sailboat 
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Classical techniques of Lagrangian and Newtonian mechanics are the most used methods for determining the 
mathematical model of a catamaran sailing boat. An example of a dynamic model with six Degree of Freedom 
6-DoF is presented in (Furrer, 2010) using Fossen approach (Fossen, 2002).  

Several control techniques have been applied in sailing vessel. The most used regulators are the Proportional 
Integral Derivative PID controllers (Cruz et al, 2014) and (Ramirez, 2012). This control law is designed using 

Nomoto’s first order model. In addition, a Mamdani type fuzzy inference systems was used by authors (Stelzer 
et al, 2007) to control both actuators for sail and rudder. Another fuzzy-based controller has been developed in 
(Gomes et al, 2015) and (Abril et al, 1997) where the rudder angle was calculated via the heading and the 
desired angular velocity. Xiao and Jouffroy (Xiao et al, 2014) designed a nonlinear heading controller for a 4-
DoF monohull sailboat model using backstepping technics. The basic idea behind this method is to break down 
the design problem of the full system into a sequence of sub-problems on lower order systems, and recursively 

use some states as “virtual input” to obtain the intermediate control laws with the Control Lyapunov Function 
(CLF). The main advantage of backstepping control is the guarantee of system stability. 

In this paper, due to the high nonlinearities of the developed dynamic model of the catamaran sailboat, an 
autopilot was designed based on backstepping approach in order to steer the vehicle towards a specific target. 
For a given wind direction, the sail position is defined as a direct function of the boat heading.  
In the following section, a dynamic model of a sailing catamaran with four degree of freedom is described. In 
section III, the nonlinear heading controller was designed and tested with the developed dynamic model. Finally, 
some simulation results were carried out to illustrate and to evaluate the studied approach. 

 

2    System Dynamics 

The dynamic model of the catamaran sailboat presented in this paper is inspired from previous researches 
conducted in (Jaulin et al, 2013) and (Wille et al, 2016).  One of the main contributions of this paper consists 
of the improvement of the dynamic model by taking into consideration the roll and the sway motion. Therefore, 
the resulting dynamic model has 4-DoF instead of three. This dynamic model of the sailing catamaran is derived 
under the following assumptions: 

• The sail and the rudder are modeled as rigid foils. 

• Added mass coefficients (Fossen, 2002) are modeled as constants.   

• The sailboat is assumed to evolve in calm waters. 
The modeled catamaran sailing boat is presented in Figure 2 and Appendix B, where the North-East-Down 

NED coordinate system (𝑋𝑋,𝑌𝑌,𝑍𝑍) is treated as inertial reference frame (𝑛𝑛 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) and the (𝑥𝑥𝑏𝑏 ,𝑦𝑦𝑏𝑏 , 𝑧𝑧𝑏𝑏) is the 

body fixed frame (𝑏𝑏 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) connected to the boat. 

The latter is the reference frame attached to the sailboat. It rotates with angular velocity 𝑊𝑊 = (𝑝𝑝 𝑞𝑞 𝑟𝑟)𝑇𝑇 relative 

to the (𝑛𝑛 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓). Its origin is assumed to coincide with the sailboat’s center of gravity G. 

The sailboat linear velocity in (𝑏𝑏 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) is 𝑉𝑉 = (𝑢𝑢 𝑣𝑣 𝑤𝑤)𝑇𝑇. 
The sailboat is assumed to be rigid and 4-DoF are considered, after excluding both heaving and pitching 

motions  𝑞𝑞 = 𝑤𝑤 = 0. (See Figure 1) 

𝝂𝝂 = (𝑢𝑢 𝑣𝑣 𝑟𝑟 𝑝𝑝)𝑇𝑇 is the velocity vector in the (𝑏𝑏 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) and 𝜂𝜂 = (𝑥𝑥 𝑦𝑦 𝜓𝜓 𝜙𝜙) 𝑇𝑇is a vector describing, the position 

of the sailboat, its yaw and roll in the (𝑛𝑛 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓). 

 

Figure 2: Top and rear view of the modelled catamaran sailboat 
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Vector 𝜂𝜂 is then derived through a coordinate transformation (Fossen, 2002), giving the following kinematic 
equations of the sailboat: 

𝑥̇𝑥 = 𝑢𝑢 cos𝜓𝜓−𝑣𝑣 sin𝜓𝜓 cos𝜙𝜙 + 𝑉𝑉𝐶𝐶 cos𝜑𝜑 

𝑦̇𝑦 = 𝑢𝑢 sin𝜓𝜓+𝑣𝑣 cos𝜓𝜓 cos𝜙𝜙 + 𝑉𝑉𝐶𝐶 sin𝜑𝜑 

𝜓̇𝜓 = 𝑟𝑟 cos𝜙𝜙 

𝜙̇𝜙 = 𝑝𝑝 
 

Where 𝜑𝜑 and 𝑉𝑉𝑐𝑐 are respectively the maritime current direction and speed. 
The sail of the boat is inflated by the apparent wind force and consequently the sailboat advances. 

According to (Xiao et al, 2014), the apparent wind 𝐴𝐴𝐴𝐴 is the vector sum of the true wind 𝑇𝑇𝑇𝑇 in 

(𝑏𝑏 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 𝑇𝑇𝑇𝑇  𝑏𝑏−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and the sailboat velocity 𝝂𝝂. (Appendix A). 

The true wind vector expressed in the (𝑛𝑛 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)  𝑇𝑇𝑇𝑇  𝑛𝑛−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is given by: 
 

𝑇𝑇𝑇𝑇  𝑛𝑛−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = �
𝑇𝑇𝑇𝑇𝑇𝑇 cos𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇 sin𝑇𝑇𝑇𝑇𝑇𝑇

0
� 

So, 

𝑇𝑇𝑇𝑇  𝑏𝑏−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑅𝑅2𝑅𝑅1𝑇𝑇𝑇𝑇  𝑛𝑛−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
With 

𝑅𝑅1 = �
cos𝜓𝜓 sin𝜓𝜓 0
− sin𝜓𝜓 cos𝜓𝜓 0

0 0 1
� 

𝑅𝑅2 = �
1 0 0
0 cos𝜙𝜙 sin𝜙𝜙
0 − sin𝜙𝜙 cos𝜙𝜙

� 

 
Therefore, we get 

𝐴𝐴𝐴𝐴  𝑏𝑏−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑇𝑇𝑇𝑇  𝑏𝑏−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑉𝑉 −𝑊𝑊 × (𝑥𝑥𝑠𝑠 𝑦𝑦𝑠𝑠 𝑧𝑧𝑠𝑠)𝑇𝑇 

                                     =�
𝑇𝑇𝑇𝑇𝑇𝑇 cos(𝑇𝑇𝑇𝑇𝑇𝑇 − 𝜓𝜓) − 𝑢𝑢 − 𝑟𝑟 𝑦𝑦𝑠𝑠

𝑇𝑇𝑇𝑇𝑇𝑇 sin(𝑇𝑇𝑇𝑇𝑇𝑇 − 𝜓𝜓) cos𝜙𝜙 − 𝑣𝑣 − 𝑟𝑟 𝑥𝑥𝑠𝑠 +
0

𝑝𝑝𝑧𝑧𝑠𝑠� 

                                                                     =�
𝐴𝐴𝐴𝐴𝑥𝑥𝑏𝑏

𝐴𝐴𝐴𝐴  𝑦𝑦𝑏𝑏

0
� 

Then 
            𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝐴𝐴𝐴𝐴𝑦𝑦𝑏𝑏 ,𝐴𝐴𝐴𝐴𝑥𝑥𝑏𝑏) 

 𝐴𝐴𝐴𝐴𝐴𝐴 = �𝐴𝐴𝐴𝐴  𝑏𝑏−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� 
                           = �(𝐴𝐴𝐴𝐴𝑥𝑥𝑏𝑏)2 + (𝐴𝐴𝐴𝐴𝑦𝑦𝑏𝑏)2 

The angle of attack on the sail by the direction of the apparent wind 𝐴𝐴𝐴𝐴 is equal to (𝛿𝛿𝑠𝑠 − 𝐴𝐴𝐴𝐴𝐴𝐴) (Melin, 2015). 

Therefore, the aerodynamic force 𝑓𝑓𝑠𝑠 applied on the Center of Effort CoE of the sail is equal to:  

𝑓𝑓𝑠𝑠 = 𝑝𝑝4𝐴𝐴𝐴𝐴𝐴𝐴 sin(𝛿𝛿𝑠𝑠 − 𝐴𝐴𝐴𝐴𝐴𝐴) 
The vectorial representation of this aerodynamic force in the fixed body frame (𝑏𝑏 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) is: 

𝐹𝐹𝑠𝑠 = �
𝑓𝑓𝑠𝑠
𝑥𝑥𝑏𝑏

𝑓𝑓𝑠𝑠
𝑦𝑦𝑏𝑏� = �𝑓𝑓𝑠𝑠 sin 𝛿𝛿𝑠𝑠

𝑓𝑓𝑠𝑠 cos 𝛿𝛿𝑠𝑠
� 

On the other hand, the angle of attack on the rudders by the apparent water velocity is equal to 𝛿𝛿𝑟𝑟 (Melin, 
2015). By assuming that the apparent water and the sailboat speeds are equal, the water generates a 
hydrodynamic force on each rudder which is equal to: 

�𝑓𝑓𝑟𝑟1 = 𝑝𝑝5𝑢𝑢2 sin 𝛿𝛿𝑟𝑟1
𝑓𝑓𝑟𝑟2 = 𝑝𝑝5𝑢𝑢2 sin 𝛿𝛿𝑟𝑟2

 

With                                                                       𝛿𝛿𝑟𝑟1 = 𝛿𝛿𝑟𝑟2 = 𝛿𝛿𝑟𝑟 
Thus, in what follows the hydrodynamic force applied on the sailboat is supposed created by one rudder situated 

in (𝑥𝑥𝑏𝑏 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) and equal to: 

(11) 

(12) 

(13) 

(1) 

(10) 

(5) 

(6) 

(7) 

(8) 

(9) 

(2) 
(3) 
(4) 
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 𝑓𝑓𝑟𝑟 = 𝑓𝑓𝑟𝑟1 + 𝑓𝑓𝑟𝑟2 = 2𝑝𝑝5𝑢𝑢2 sin 𝛿𝛿𝑟𝑟 
The vectorial representation of this hydrodynamic force in the fixed body frame (𝑏𝑏 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) is then 

𝐹𝐹𝑟𝑟 = �
𝑓𝑓𝑟𝑟
𝑥𝑥𝑏𝑏

𝑓𝑓𝑟𝑟
𝑦𝑦𝑏𝑏� = �−𝑓𝑓𝑟𝑟 sin 𝛿𝛿𝑟𝑟

−𝑓𝑓𝑟𝑟 cos𝛿𝛿𝑟𝑟
� 

For simplicity reasons, the sailboat is affected by some tangential friction forces −𝑝𝑝1𝑢𝑢2 and −𝑝𝑝2𝑣𝑣 respectively 

applied on (𝑥𝑥𝑏𝑏 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) and (𝑦𝑦𝑏𝑏 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) also it is affected by an angular friction force −𝑝𝑝3𝑟𝑟 applied around (𝑧𝑧𝑏𝑏 −
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎). 
In addition, the applied forces on the sailboat are 𝐹𝐹𝑠𝑠 and 𝐹𝐹𝑟𝑟. Therefore, according to Newton’s second law of 

motion applied in the (𝑏𝑏 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) , we have: 

(𝑝𝑝9 − 𝑋𝑋𝑢̇𝑢)𝑢̇𝑢 = 𝑓𝑓𝑠𝑠
𝑥𝑥𝑏𝑏 + 𝑓𝑓𝑟𝑟

𝑥𝑥𝑏𝑏−𝑝𝑝1𝑢𝑢2 
                                         = 𝑓𝑓𝑠𝑠 sin 𝛿𝛿𝑠𝑠 −𝑓𝑓𝑟𝑟 sin 𝛿𝛿𝑟𝑟 − 𝑝𝑝1𝑢𝑢2 

(𝑝𝑝9 − 𝑌𝑌𝑣̇𝑣)𝑣̇𝑣 = 𝑓𝑓𝑠𝑠
𝑦𝑦𝑏𝑏 + 𝑓𝑓𝑟𝑟

𝑦𝑦𝑏𝑏−𝑝𝑝2𝑣𝑣 

                                         = 𝑓𝑓𝑠𝑠 cos𝛿𝛿𝑠𝑠 − 𝑓𝑓𝑟𝑟 cos𝛿𝛿𝑟𝑟 − 𝑝𝑝2𝑣𝑣 

(𝑝𝑝10 − 𝑁𝑁𝑟̇𝑟)𝑟𝑟 ̇ = 𝑑𝑑𝑠𝑠𝑓𝑓𝑠𝑠 − 𝑑𝑑𝑟𝑟𝑓𝑓𝑟𝑟 − 𝑝𝑝3𝑟𝑟 
With 

          𝑑𝑑𝑠𝑠 = 𝑝𝑝6 − 𝑝𝑝7 cos 𝛿𝛿𝑠𝑠 
𝑑𝑑𝑟𝑟 = 𝑝𝑝8 cos 𝛿𝛿𝑟𝑟 

By adding the Coriolis effect caused by both rigid body and added mass (Wille et al, 2016) we get: 

 (𝑝𝑝9 − 𝑋𝑋𝑢̇𝑢)𝑢̇𝑢 = 𝑓𝑓𝑠𝑠 sin 𝛿𝛿𝑠𝑠 −𝑓𝑓𝑟𝑟 sin 𝛿𝛿𝑟𝑟 + 𝑣𝑣𝑣𝑣(𝑝𝑝9 − 𝑌𝑌𝑣̇𝑣) − 𝑝𝑝1𝑢𝑢2 
 (𝑝𝑝9 − 𝑌𝑌𝑣̇𝑣)𝑣̇𝑣   = 𝑓𝑓𝑠𝑠 cos 𝛿𝛿𝑠𝑠 − 𝑓𝑓𝑟𝑟 cos 𝛿𝛿𝑟𝑟 + 𝑢𝑢𝑢𝑢(𝑋𝑋𝑢̇𝑢 − 𝑝𝑝9) − 𝑝𝑝2𝑣𝑣 

                       (𝑝𝑝10 − 𝑁𝑁𝑟̇𝑟)𝑟̇𝑟 = (𝑝𝑝6 − 𝑝𝑝7 cos𝛿𝛿𝑠𝑠)𝑓𝑓𝑠𝑠 − 𝑝𝑝8 cos𝛿𝛿𝑟𝑟 𝑓𝑓𝑟𝑟 + 𝑢𝑢𝑢𝑢(𝑌𝑌𝑣̇𝑣 − 𝑋𝑋𝑢̇𝑢) − 𝑝𝑝3𝑟𝑟 
According to Le Bars (Le Bars et al, 2013) the roll motion is supposed to be pendulum: 

𝑝̇𝑝 =
𝑧𝑧𝑠𝑠𝑓𝑓𝑠𝑠 cos 𝛿𝛿𝑠𝑠 cos𝜙𝜙 − 𝑝𝑝13𝑝𝑝9𝑔𝑔 sin𝜙𝜙 − 𝑝𝑝12𝑝𝑝

𝑝𝑝11 − 𝐾𝐾𝑝̇𝑝
 

Therefore, the 4-DoF state equations, which describe the dynamics of the sailboat, are: 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

𝑥̇𝑥 = 𝑢𝑢 cos𝜓𝜓−𝑣𝑣 sin𝜓𝜓 cos𝜙𝜙 + 𝑉𝑉𝐶𝐶 cos𝜑𝜑
𝑦̇𝑦 = 𝑢𝑢 sin𝜓𝜓 + 𝑣𝑣 cos𝜓𝜓 cos𝜙𝜙+𝑉𝑉𝐶𝐶 sin𝜑𝜑

𝜓̇𝜓 = 𝑟𝑟 cos𝜙𝜙
𝜙̇𝜙 = 𝑝𝑝

𝑢̇𝑢 =
(𝑓𝑓𝑠𝑠 sin 𝛿𝛿𝑠𝑠 − 𝑓𝑓𝑟𝑟 sin 𝛿𝛿𝑟𝑟 + 𝑣𝑣𝑣𝑣(𝑝𝑝9 − 𝑌𝑌𝑣̇𝑣) − 𝑝𝑝1𝑢𝑢2)

(𝑝𝑝9 − 𝑋𝑋𝑢̇𝑢)

𝑣̇𝑣 =
(𝑓𝑓𝑠𝑠 cos𝛿𝛿𝑠𝑠 − 𝑓𝑓𝑟𝑟 cos𝛿𝛿𝑟𝑟 +𝑢𝑢𝑢𝑢(𝑋𝑋𝑢̇𝑢 − 𝑝𝑝9) − 𝑝𝑝2𝑣𝑣)

(𝑝𝑝9 − 𝑌𝑌𝑣̇𝑣)

𝑟̇𝑟 =
((𝑝𝑝6 − 𝑝𝑝7 cos 𝛿𝛿𝑠𝑠)𝑓𝑓𝑠𝑠 − 𝑝𝑝8 𝑓𝑓𝑟𝑟cos 𝛿𝛿𝑟𝑟 + 𝑢𝑢𝑢𝑢(𝑌𝑌𝑣̇𝑣 − 𝑋𝑋𝑢̇𝑢) − 𝑝𝑝3𝑟𝑟)

(𝑝𝑝10 − 𝑁𝑁𝑟̇𝑟)

𝑝̇𝑝 =
𝑧𝑧𝑠𝑠𝑓𝑓𝑠𝑠 cos𝛿𝛿𝑠𝑠 cos𝜙𝜙 − 𝑝𝑝13𝑝𝑝9𝑔𝑔 sin𝜙𝜙 − 𝑝𝑝12𝑝𝑝

𝑝𝑝11 − 𝐾𝐾𝑝̇𝑝

 

This system state space (23) is highly nonlinear and it has the following compact notation; 𝑋̇𝑋 = 𝑓𝑓(𝑋𝑋,𝑈𝑈,𝐵𝐵) 
With: 

𝑋𝑋 = (𝑥𝑥 𝑦𝑦 𝜓𝜓 𝜙𝜙 𝑢𝑢 𝑣𝑣 𝑟𝑟 𝑝𝑝) 𝑇𝑇 the state vector. 

𝑈𝑈 = �𝛿𝛿𝑠𝑠𝛿𝛿𝑟𝑟
� the input vector. 

𝐵𝐵, disturbance due to maritime current. 
The two actuators, sail and rudder, have physical limitations. In this dynamic model, these limitations are 

expressed by setting the maximum sail opening angle to 𝛿𝛿𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 = 90° and the maximum angular velocity to 30 
°/s. In (Santos et al, 2016) and (Xiao et al, 2014), the control of the sail opening angle was assured by setting 

(20) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(22) 

(23) 

(21)  
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the length of the rope which is attached to the boom. However, in this paper, it is assumed that the sail is 
rotated by a servomotor built in the mast. Therefore, the sail and servo angle were assumed to be equal. 

The rudder will follow similar limitations, 𝛿𝛿𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 = 45° for maximum rudder angle and 30 °/s for its maximum 
angular velocity. 

 

3    Autopilot Design 

To make an autonomous catamaran sailboat follow a given path or reach a target position(𝑥𝑥𝑑𝑑 , 𝑦𝑦𝑑𝑑), a 
controller with two levels is designed as presented in Figure 3. The first one is a high-level controller. It generates 

the desired heading 𝜓𝜓𝑟𝑟𝑟𝑟𝑟𝑟 and the sail opening angle 𝛿𝛿𝑠𝑠 for a sailing trip. The second controller is the autopilot. 
It usually sails the boat to the desired heading. In this paper, we will focus on the autopilot design. Regarding 
the navigation strategy (high-level controller), we will use the waypoint tracking proposed in (Jaulin, 2014) with 
minor improvements. 

 

 
Figure 3:  Proposed control scheme 

 

3.1      Heading Control  

To use the backstepping techniques we consider again the subsystem described by the two differential 
equations (3) and (21). 

The heading error is: 𝑒𝑒1 = 𝜓𝜓𝑟𝑟𝑟𝑟𝑟𝑟 −  𝜓𝜓 , its dynamics is written as  𝑒̇𝑒1 = −𝑟𝑟 cos𝜙𝜙  since 𝜓𝜓𝑟𝑟𝑟𝑟𝑟𝑟̇ = 0 
Let the Control Lyapunov Function be defined as 

𝑉𝑉1 =
1
2
𝑒𝑒12 

We first choose 𝑟𝑟 as the virtual control input to converge the system toward 𝑒𝑒1 = 0 with a stabilizing function 

𝑔𝑔1(𝑒𝑒1,𝜙𝜙) such that 𝑉𝑉1̇ < 0 for all 𝑒𝑒1 ≠ 0. 

We have                                                                     𝑉𝑉1̇ = 𝑒𝑒1𝑒̇𝑒1 = −𝑟𝑟𝑒𝑒1 cos𝜙𝜙 

By taking  𝑟𝑟 = 𝑔𝑔1(𝑒𝑒1,𝜙𝜙) = 𝑘𝑘1𝑒𝑒1
cos𝜙𝜙

   we obtain   𝑉𝑉1̇ = −𝑘𝑘1𝑒𝑒12 < 0 

Where 𝑘𝑘1is a positive design constant. 

However, since 𝑟𝑟 is not the system input, we can achieve 𝑟𝑟 = 𝑔𝑔1(𝑒𝑒1,𝜙𝜙) = 𝑘𝑘1𝑒𝑒1
cos𝜙𝜙

  only with an error that is 

represented by the new variable error 

𝑒𝑒2 = 𝑔𝑔1(𝑒𝑒1,𝜙𝜙) − 𝑟𝑟 
The new dynamic errors are: 

(24) 

(25) 

(26) 
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⎩
⎨

⎧ 𝑒̇𝑒1 = −𝑟𝑟 cos𝜙𝜙 = cos𝜙𝜙 �𝑒𝑒2 −
𝑘𝑘1𝑒𝑒1
cos𝜙𝜙

� = 𝑒𝑒2cos𝜙𝜙 − 𝑘𝑘1𝑒𝑒1

𝑒̇𝑒2 =
𝑘𝑘1

cos2 𝜙𝜙
(𝑒𝑒1𝑝𝑝 sin𝜙𝜙 − 𝑟𝑟 cos2 𝜙𝜙) − ℎ(𝜓𝜓, 𝑟𝑟,𝑢𝑢, 𝑣𝑣, 𝛿𝛿𝑟𝑟 ,𝑓𝑓𝑠𝑠)

 

with  

ℎ(𝜓𝜓, 𝑟𝑟,𝑢𝑢, 𝑣𝑣, 𝛿𝛿𝑟𝑟 , 𝑓𝑓𝑠𝑠) = 𝑟̇𝑟 
So, the new control Lyapunov function 𝑉𝑉2 can be written as 

𝑉𝑉2 =
1
2
𝑒𝑒12 +

1
2
𝑒𝑒22 

Then 

  𝑉𝑉2̇ = 𝑒𝑒1𝑒̇𝑒1 + 𝑒𝑒2𝑒̇𝑒2 
given that 

𝑒𝑒1𝑒̇𝑒1 =   𝑒𝑒1(𝑒𝑒2 cos𝜙𝜙 − 𝑘𝑘1𝑒𝑒1) 

𝑒𝑒2𝑒̇𝑒2 = 𝑒𝑒2(
𝑘𝑘1

cos2 𝜙𝜙
(−𝑟𝑟 cos2 𝜙𝜙 + 𝑒𝑒1𝑝𝑝 sin𝜙𝜙) − ℎ(𝜓𝜓, 𝑟𝑟,𝑢𝑢, 𝑣𝑣, 𝛿𝛿𝑟𝑟 ,𝑓𝑓𝑠𝑠)) 

 
 
 

 𝑉𝑉2̇ can be rewritten as: 

 𝑉𝑉2̇ = 𝑒𝑒1𝑒𝑒2 cos𝜙𝜙 − 𝑘𝑘1𝑒𝑒12 − 𝑒𝑒2ℎ(𝜓𝜓, 𝑟𝑟,𝑢𝑢, 𝑣𝑣, 𝛿𝛿𝑟𝑟 ,𝑓𝑓𝑠𝑠) − 𝑒𝑒2𝑘𝑘1𝑟𝑟 +
𝑒𝑒2𝑒𝑒1𝑘𝑘1𝑝𝑝
cos2 𝜙𝜙

sin𝜙𝜙 

By choosing  

ℎ(𝜓𝜓, 𝑟𝑟,𝑢𝑢, 𝑣𝑣, 𝛿𝛿𝑟𝑟 ,𝑓𝑓𝑠𝑠) = 𝑒𝑒1(𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 +
𝑘𝑘1𝑘𝑘2
𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙

+
𝑘𝑘1𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠 𝜙𝜙

cos2 𝜙𝜙
) − 𝑟𝑟(𝑘𝑘1 + 𝑘𝑘2) 

We get 

𝑉𝑉2̇ = −𝑘𝑘1𝑒𝑒12 − 𝑘𝑘2𝑒𝑒22 < 0   ∀   𝑒𝑒1 ≠ 0 , 𝑒𝑒2 ≠ 0 

With 𝑘𝑘2 ∈  ℜ∗+  
Using equations (14), (28) and (34) we obtain:  
 

𝛿𝛿𝑟𝑟 = 0.5 𝑠𝑠𝑠𝑠𝑠𝑠−1(
(𝑝𝑝6−𝑝𝑝7 𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿𝑠𝑠))𝑓𝑓𝑠𝑠+𝑢𝑢𝑢𝑢(𝑌𝑌𝑣̇𝑣−𝑋𝑋𝑢̇𝑢)−𝑟𝑟�𝑝𝑝3−(𝑝𝑝10−𝑁𝑁𝑟̇𝑟)(𝑘𝑘1+𝑘𝑘2)�−𝑒𝑒1(𝑝𝑝10−𝑁𝑁𝑟̇𝑟)�𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙+𝑘𝑘1𝑘𝑘2𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙+𝑘𝑘1𝑝𝑝

𝑠𝑠𝑠𝑠𝑠𝑠𝜙𝜙
cos2𝜙𝜙�

0.5𝑝𝑝5𝑝𝑝8𝑢𝑢2
) 

With 

� 𝛿𝛿𝑟𝑟 <  |𝛿𝛿𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚|
  𝑢𝑢 ≠ 0   ∀  𝑋𝑋 ∈  ℜ8 

 

3.2    Navigation Strategy 

Based on the polar diagram0F

1 given in Figure 5 and using the target position (𝑥𝑥𝑑𝑑 ,𝑦𝑦𝑑𝑑), the system state space 
and the wind direction, the high-level controller which is inspired from (Jaulin, 2014) generates the desired 

heading 𝜓𝜓𝑟𝑟𝑟𝑟𝑟𝑟 and the sail opening angle 𝛿𝛿𝑠𝑠.  
As we know, a sailing boat cannot sail directly against the wind direction because in this case the sail will be 
luffing in the breeze and cannot generate any propulsive power. 
The polar diagram (see Figure 5) shows the sector of directions that cannot be navigable by sailboats. It is 
called a no-go-zone. The size of the no-go zone, referred to as the no-go-heading, will differ based on 
characteristics of the particular sailboat. 
To avoid this no-go-zone, the boat has to sail in Zig-Zag course and execute tack1F

2 manoeuver so, the high-level 

controller must generate desired heading   𝜓𝜓𝑟𝑟𝑟𝑟𝑟𝑟 ∉ ]TWA + π − ξ , TWA − π + ξ[.   
                                        
1 is the set of all pairs (𝜓𝜓, u) that can be reached by the sailboat when it navigates. 
2 The sailboat tacks, that is sails on alternating sides of the wind and therefore advances towards the wind. This is the most complex 
case, testing the interaction between all parts of the model, especially rudder and sail forces. 

(27) 

(29) 

(31) 

(33) 

(36) 

(30) 

(28) 

(32) 

(34) 

(35) 
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So, in the case where the sailboat has to navigate with maximum speed on an upwind navigation (𝑇𝑇𝑇𝑇𝑇𝑇 = 𝜋𝜋+ 𝜓𝜓) 
the following set of headings are used.  

𝜓𝜓1
𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝜋𝜋 − ξ − 𝛽𝛽   and   𝜓𝜓2

𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝜋𝜋 + ξ + 𝛽𝛽 

For downwind sailing, the desired heading given by the high-level controller is defined by the following 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 
function2F

3: 

𝜓𝜓3
𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑦𝑦 − 𝑦𝑦𝑑𝑑 , 𝑥𝑥 − 𝑥𝑥𝑑𝑑) 

which allows the sailboat to navigate directly toward its destination. 
Using the algorithm given in (Santos, 2016) and presented on Figure 4, the overall system was simulated to 
evaluate the control law developed in this work. 

In what follows, the wind is simulated coming from the North (𝑇𝑇𝑇𝑇𝑇𝑇 = −𝜋𝜋
2
) and its speed is equal to 10 m/s. 

Therefore the sail opening angle is given by the following equation, it depends on the sailboat heading 𝜓𝜓: 

𝛿𝛿𝑠𝑠 = 𝜋𝜋 �
𝜓𝜓
2𝜋𝜋

+
1
4
� +

𝜋𝜋
4
−
𝜓𝜓
2
 

Using equations (27) and (34) the error dynamics is 

�
𝑒̇𝑒1 = 𝑒𝑒2 cos𝜙𝜙 − 𝑘𝑘1𝑒𝑒1

𝑒̇𝑒2 = −𝑒𝑒1 �cos𝜙𝜙 +
𝑘𝑘1𝑘𝑘2
cos𝜙𝜙

� + 𝑟𝑟𝑘𝑘2
 

Hence, the controller (36) is tuned with 𝑘𝑘1 = 𝑘𝑘2 = 1 using the pole placement method applied to equation system 
(40). 

         

  Figure 4: Algorithm used to control the sailboat  
  (Guidance, Navigation and Control) 

 

 

                                        
3 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑦𝑦, 𝑥𝑥) ∈ [−𝜋𝜋,𝜋𝜋] is the four-quadrant inverse tangent. 

 

(37) 

(38) 

(39) 

(40) 

Figure 5: Sailboat polar diagram 
𝜉𝜉 = 𝜋𝜋

4
 , 𝛽𝛽 = 𝜋𝜋

12
 

 

Vessel Development & Modelling

47



 
 

4    Simulation and Results 

Four set of simulations have been studied in order to show the path followed by the sailboat against the 

wind direction. In these simulations, the target is situated in position (𝑥𝑥𝑑𝑑 = 0 ; 𝑦𝑦𝑑𝑑 = 0)  . The simulations started 

with initial values 𝑋𝑋(𝑡𝑡 = 0) = (𝑥𝑥𝑖𝑖  𝑦𝑦𝑖𝑖  𝜓𝜓𝑖𝑖  0 8 0 0 0 )𝑇𝑇 with 𝑖𝑖 ∈ {1,2,3,4} and stopped when the target position was 
reached with a distance equal to ten meters. 
The proposed control law allows the sailboat to reach the target position. Figure 6 clearly shows that the boat 

sails on Zig-Zag course when the target is situated against the true wind direction 𝑖𝑖 ∈ {3,4}. However, it goes 

directly to the target position in downwind case 𝑖𝑖 ∈ {1,2}. We can conclude that there is a good synchronization 
between the sail opening angle Figure 8 and the rudder control Figure 7 in order to execute the upwind tack 

maneuver. Figure 9 shows that the heading  𝜓𝜓(𝑡𝑡) eventually converges to the desired heading 𝜓𝜓𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) with an 

error  𝜓𝜓𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 𝜓𝜓(𝑡𝑡) = 0 . 
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Figure 9: Time evolution of the desired heading 
𝜓𝜓𝑟𝑟𝑟𝑟𝑟𝑟and the sailboat heading 𝜓𝜓 (𝑖𝑖 = 3) 
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5    Conclusion 

In this paper, a 4-DoF mathematical model describing the dynamic motion of a catamaran sailboat was 
presented. This dynamic model is considered a satisfactory model to represent the vehicle dynamic motion in 
the horizontal plane. The backstepping control method is used to develop a nonlinear heading control for the 
sailing boat. This controller works as intended. It allows to keep the sailboat on a predefined heading while 
waypoint tracking. The control system stability was proved using Control Lyapunov Function. As a future work 
in this area, it is suggested to identify the considered 3D printed catamaran sailboat (Figure 1) model parameters 
using the temporal variation data of the yaw angle (Casado et al, 2005). Afterwards, the implementation of the 
developed control law in real time will be done. 
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Notation Description 
TW, AW 

TWS, TWA 
AWS, AWA 

𝑉𝑉𝐶𝐶 ,𝜑𝜑 
 (𝑥𝑥,𝑦𝑦) 

(𝑥𝑥𝑠𝑠,𝑦𝑦𝑠𝑠 , 𝑧𝑧𝑠𝑠) 
𝜓𝜓,𝜙𝜙 
𝛿𝛿𝑠𝑠 

𝛿𝛿𝑟𝑟1, 𝛿𝛿𝑟𝑟2 
𝑢𝑢, 𝑣𝑣 
𝑟𝑟, 𝑝𝑝 
𝑓𝑓𝑠𝑠 

𝑓𝑓𝑟𝑟1, 𝑓𝑓𝑟𝑟2 

𝑔𝑔 
𝑝𝑝1, 𝑝𝑝2 
𝑝𝑝3 

𝑝𝑝4, 𝑝𝑝5 
𝑝𝑝6 
𝑝𝑝7 

 
𝑝𝑝8 
𝑝𝑝9 

𝑝𝑝10, 𝑝𝑝11 
𝑝𝑝12 
𝑝𝑝13 

 
ξ 
 
β 

𝑋𝑋𝑢̇𝑢,𝑌𝑌𝑣̇𝑣,𝑁𝑁𝑟̇𝑟 ,𝐾𝐾𝑝̇𝑝 

-true and apparent wind vector. 
-true wind speed and direction. 
-apparent wind speed and direction 
-maritime current speed and direction 
-north east position 
-coordinate of the CoE of the sailboat in (b-frame). 
-yaw and roll angle in the (n-frame).   
-sail opening angle in the (b-frame).   
-rudder angle in the (b-frame). 
-surge and sway motion in the (b-frame).   
-angular velocity in yaw and roll (b-frame).   
-aerodynamic force of the wind applied on the sail  
-hydrodynamic forces of the water applied on the 
left and right rudder in the (b-frame).    
-gravity. 
-water friction in (𝑥𝑥𝑏𝑏_axis) and (𝑦𝑦𝑏𝑏_axis). 
-water angular friction. 
-lift coefficient of the sail/rudder. 
-distance between the mast and CoE. 
-distance between the boat’s center of gravity and 
the mast.  
-distance between G and the rudder.  
-total mass of the boat. 
-moment of inertia Z-axis / X-axis. 
-roll friction coefficient. 
-length of the equivalent pendulum in roll motion (in 
m). 
-width of the no-go-zone, this parameter depends on 
the sailboat characteristics. 
-an angle which gives maximum speed when the 
sailboat is on an upwind navigation. 
-added mass in (b-frame) 
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Abstract

Unmanned Maritime Systems (UMS), such as Unmanned Surface Ve-
hicles (USVs), are increasingly playing a critical role in expanding the
undersea superiority of a nation, addressing growing challenges, such
as, inter alia, in piracy, natural resource disputes, drug trafficking,
weapons proliferation, as well as being highly used for science and sur-
vey missions. Autonomous capabilities in USVs can reduce the costs of
reaching into distant environments and using that reach to meet a par-
ticular mission’s objectives. However, to take on increased autonomy
in unmanned systems, USVs will increasingly require the ability to be
untethered from human interaction, and a key enabler to effecting this
is accurate navigation. USVs have traditionally depended on Global
Navigation Satellite Systems (GNSS), which are known to have secu-
rity and safety vulnerabilites. Using systems-theoretic process analysis
(STPA), this paper provides systematic analyses of the attack surfaces
and of the impact of cyber attacks against the navigational aspects
of Unmanned Surface Vehicles. As part of these analyses, we identify
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potential threats, vulnerabilities and attacks in the Positioning, Navi-
gation and Timing (PNT) functionalities of USVs. These analyses can
be used to drive a USV’s architecture, leading to the design of more
effective and secure USV operations.

1 Introduction

Over 90% of information, people, goods and services flow across the worlds oceans (Navy, ). Protecting a
country’s residents and economic prosperity is, therefore, essential and dependent on the ability to persistently
monitor ocean surface and sub-surface activities, in order to identify, classify and mitigate emerging threats.
Unmanned Maritime Systems (UMS), such as Unmanned Surface Vehicles (USVs), are increasingly playing a
critical role in expanding the surface and underwater superiority of a nation, and addressing growing challenges,
such as, inter alia, in piracy, natural resource disputes, drug trafficking and weapons proliferation. USVs are
also employed in other areas of economic life, such as (a) Maritime search and rescue, (b) Hydrologic surveys,
(c) Port surveillance, (d) Underwater Inspection, (e) Naval Defence, and their greater use could save the global
marine industry up to £80 billion per annum by “potential reductions in capital costs, manning costs and fuel
costs” (Rolls-Royce, ).

Figure 1: ASV C-Worker USV from asvglobal.com

Because of their position at the air-sea interface, USVs have the ability to relay radio frequency transmissions
in air and acoustic transmissions undersea. Thus they are a key piece in the vision of networked maritime space,
both in defence and civil. Figure 1 shows an example commercial USV, while figure 2 shows an example of how
BP is making use of UMS in its networked maritime space (the picture shows a number of USVs, e.g. C-Worker,
WaveGlider and Autonaut, plus some underwater vehicles, such as the Seaglider, working together to monitor
the ocean surface and the seabed).

Autonomous capabilities in USVs can reduce the costs and risks of reaching into distant environments while
using that reach to meet missions’ objectives. Marine vehicles are taking on higher levels of autonomy to perform
unmanned missions, therefore securing their autonomous navigation and control modules becomes increasingly
important.

2 Autonomy, Navigation and Control

Autonomy incorporates “systems which have a set of intelligence-based capabilities that allow it to respond to
situations that were not programmed or anticipated in the design (i.e., decision-based responses). Autonomous
systems have a degree of self-government and self-directed behavior (with the humans proxy for decisions)”
(Air Force Research Laboratory, 2013). USVs must be capable of avoiding ships, docks, floating debris, and
navigation aids must ensure that these USVs are able to avoid these obstacles and other marine assets, and remain
in navigable waters. In addition, USVs must operate in accordance with collision regulations (COLREGS)1.

1http://www.collisionregs.com/MSN1781.pdf
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Figure 2: An example application of collection of UMS (from “How a new robot fleet is monitoring the underwa-
ter world” at http://www.bp.com/en/global/corporate/bp-magazine/innovations/ocean-monitoring-with-robot-
technology.html)

Because not all maritime traffic (including military and commercial) always follow the COLREGS, therefore,
assured autonomous navigation and control are very important to develop and maintain in USVs.

There are a wide range of definitions of autonomy depending on the field. In the maritime sector, the most
widely agreed definition is given in (UK, ), and has six levels. These levels are, in ascending order of autonomy:

� Level 0: Manned; Vessel/craft is controlled by operators aboard

� Level 1: Operated; Under Operated control where all cognitive functionality is within the human operator

� Level 2: Directed; Under Directed control some degree of reasoning and ability to respond is implemented
into the Unmanned Vessel. However, the authority to make decisions is with the operator

� Level 3: Delegated; The Unmanned Vessel is now authorised to execute some functions. The control
initiative emanates from the Unmanned Vessel and decision-making is shared between the operator and the
Unmanned Vessel

� Level 4: Monitored; The Unmanned Vessel will sense environment and report its state. The operator may
monitor the events, and

� Level 5: Autonomous; The Unmanned Vessel will sense environment and report its state. The operator may
monitor the events.

At the very highest level, missions are specified as a series of waypoints, with functionality tags (such as
profile, station keep, dock) with the vehicle attempting to maintain a straight course between waypoints. Many
USVs have the capacity for real-time bidirectional communication between the control station and the USV,
where the USV can have the waypoints, steering, and communication commands sent to it in near-real time.

During USV navigation, there are three main operations to carry out. These are: (a) Route Planning (way-
points’ elicitation), (b) Monitoring of the Navigation, and (c) Updates to Route Planning, if and when necessary.
Once the USV starts moving, locomotion along the route has to be monitored, by the USV and/or the control
station, for various reasons, such as obstacle avoidance, asset detection, and changes in weather, thereby making
accurate and secure navigation of these autonomous vessels essential for safety.

2.1 Navigating Autonomous Marine Vessels Safely and Securely

USVs are required to be at least as safe as the equivalent human-operated surface vessels. Some of the safety
concerns for USVs that have navigation as core include: (a) their ability to avoid collisions with other marine
assets, such as floating objects (e.g. bouys, etc.) or other marine vessels, (b) their ability to navigate safely in
coastal areas, (c) ability to handle emergencies, such as failure recovery and repairs at sea of itself or of other
marine vessels.

To be safe in its operation, a USV should endeavour not be a safety hazard to itself, other surrounding marine
assets, or the maritime environment, of which it is a part. USV navigation is usually provided by the Global
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Navigation Satellite Systems (GNSS), of which the General Positioning System (GPS) is a part of. Depending on
the level of autonomy of the corresponding USV, successful navigation, and mission operations, require precise
positioning, timing and collision avoidance. All these depend on the accuracy of the GNSS values provided to
the USV.

2.2 Positioning And Navigating with Global Navigation Satellite Systems (GNSS)

Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS), Russia’s GLONASS,
the European Union’s Galileo and China’s COMPASS, provide important positioning, navigation and timing in-
formation to military, civilian and commercial users around the world. GNSS comprises mainly three components
(Ioannides et al., 2016): (a) the User Segment, (b) the Control and Uplink Segment and (c) the Space Segment.

The Space segment consists of a constellation of operating satellites that transmit one-way signals that give
the current GNSS satellite position and time. These signals are generated by the satellites’ payloads that also
contain one or more atomic clocks. These clocks are used to precisely time the signals and to provide good
frequency reference. The navigation signals are optimised for various applications but they share a similar
structure. For a given satellite, m, the transmitted signal, s(t), is modelled by: sm(t) =

√
2Pmcm(t)cos(2πfRF t),

where m denotes the satellite index, P is the transmit power, d(t) the broadcast navigation message, c(t) a
pseudo-randomly alternating chipping sequence, t denotes time, and fRF is the nominal carrier frequency.

The control segment consists of a global network of ground facilities that track the satellites, monitor their
transmissions, perform analyses, and send commands and data to the constellation. As the locations of these
stations are precisely known and the orbital motion of the satellites follows Kepler’s laws, these data can be used
to determine and predict the satellite positions. The user segment consists of the GNSS receiver equipment,
which receives the signals from the GNSS satellites and uses the transmitted information to calculate the user’s
three-dimensional position, velocity and time. Figure 3 shows a schematic diagram of GPS showing the three
segments.

Figure 3: The Three GPS Segments, from (Humphreys, 2011)

2.3 GNSS Vulnerabilities

GNSS signals are very weak, as low as −160dBW , and unencrypted. As such, the system is vulnerable to
unintentional and intentional interference. The result of such interference could be the complete failure of the
vessel’s GNSS receiver or, possibly worse, the presentation to the vehicle of hazardously misleading information for
navigation and situational awareness. In general, three attack types are distinguished (Maarse, 2016): spoofing,
jamming, and meaconing attacks. Meaconing is the interception and rebroadcasting of navigation signals in
order to confuse navigation, while jamming is the intentional interference of the GNSS signals via the emission of
radio frequency energy of sufficient power and with the proper characteristics to prevent receivers in the target
area from tracking the GNSS signals. Spoofing is the broadcast of false signals with the intent that the victim
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receiver will misinterpret them as authentic signals. The victim might deduce a false position fix, a false clock
offset, or both.

Although GNSS signal jamming has been popular in recent times, interest in GNSS spoofing has intensified
of late due to successful “spoofing in the wild” that have been reported. Examples include, the Iranian military
forcibly capturing a highly classified CIA drone in Dec. 2011. An Iranian engineer involved in the capture
claimed that they spoofed the drone into landing in Iran when it thought it was landing at its base in Afghanistan
(Rawnsley, ). A scientific satellite was reported to have received spoofing-like GPS interference over Ukraine
(Divis, 5 09). A yacht was spoofed deluding the receiver, causing the vessel’s autopilot system and crew to
navigate along a course laid out by the adversary (Bhatti and Humphreys, 7 05; ?). Spoofing could send marine
vehicles, off-course, especially in low-visibility conditions, threatening safety and security.

2.4 Safe and Secure Navigation of Unmanned Marine Systems (UMS)

The rising level of autonomy brings with it new hazards and risks that need to be handled and/or mitigated
in order to enjoy its economic benefits. Due to their importance, safety and security impose constraining
requirements that need to be fulfilled in the design and implementation of the navigation module of unmanned
marine systems, such as USVs. Safety analysis methods, such as HAZOP (Tyler et al., 2015), work on an existing
design and are ill-suited to assess the kinds of cyber-physical systems employed in UMS. Systems and system
designs have become so complex that waiting until a design is completed to perform safety and security analyses
on it is impractical. Even if by dint of sheer will it is possible to perform such analyses, changing the design after
the fact is usually impractical (financially and intellectually). Much of this effort, therefore, goes into proving
that existing designs are safe and/or secure rather than building designs that are safe from the beginning. The
only hope for practical and cost-effective safe design approaches in these systems is to design safety and security
in from the beginning.

Due to the interactions between the software and the physical parts of cyber-physical systems, and the
ensuing emergence that are the results of these component interactions, research suggests that designing secure
safety-critical systems poses a substantial challenge (Oates et al., 2013) with a view that engineering “complex
embedded and cyber-physical systems requires a holistic view on both product and process” (Schlinglof, 2016).
Security and safety need to be incorporated across the engineering life-cycle to ensure such systems are safe from
accidents and hazards, and secure from deliberate threats.

3 Security and Hazard Analyses of the Navigation Component of Unmanned Ma-
rine Systems (UMS)

Accidents have traditionally been conceived of as occurring from a sequence of directly related failure events,
each of which leads to the next event in the chain of events. Increased system complexity and interactions, and
the introduction of software, are leading to new types of accidents, accidents that are more a result of inter-
component interactions (and not just intra-component failures). Traditional analysis methods work with accident
models that are based on the fault-error-failure chain (Avizienis et al., 2004). While these models are valid to
describe failures of single components, they are insufficient to describe system failures in complex interconnected
systems. Systems-Theoretic Accident Model and Processes (STAMP) (Leveson, 2004) is an accident causality
model based on systems theory. It expands the traditional model of causality beyond a chain of directly-related
failure events or component failures to include more complex processes and unsafe interactions among system
components.

STAMP is based on the three concepts of safety constraints, a hierarchical safety control structure and pro-
cess models. STAMP considers events leading to accidents occur because safety constraints were not successfully
enforced. Safety constraints on a system are imposed by the laws of physics, the regulatory and organisational
frameworks, the systems with which it interacts, and/or the functions it performs, and design and development
decisions. System-level constraints are first identified and responsibility for enforcing them is divided and al-
located. Then, during system design and development, system-level safety constraints are broken down and
sub-constraints are allocated to the system components.

STAMP considers systems as hierarchical control structures where each level imposes constraints on the
activity of the level beneath it. The standard control structure involves four components of Controller, the
Controlled entity, Actuators and Sensors (figure 4).

The controller issues control actions implemented by actuators that affect the state of the controlled en-
tity/process. Sensors capture changes in the state of the controlled process and transmit them to the controller
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Figure 4: Standard control structure as used in STAMP

process which uses this feedback information to issue new actions to keep the controlled process in the desired
safe operational state. In STAMP, the controller has a model of the controlled process. The controller maintains
this model with the feedback information provided by the sensors and, based on this model, determines the
control actions.

Accidents, in STAMP, are violations of safety constraints that were not adequately enforced by control actions
because the model of the controlled process in the controller departs from the actual behaviour of the controlled
process. This discrepancy is the source of the four possible causes of accidents: (a) A control action required for
safety was not provided; (b) An unsafe control action was provided; (c) A control action required for safety was
provided too early or too late or in the wrong sequence; and (d) A control action required for safety was stopped
too soon or applied too long.

Based on STAMP, System Theoretic Process Analysis (STPA) (Leveson and Thomas, 2018) and STPA-Sec
(Young and Leveson, 2013) were developed as new hazard analyses techniques to evaluate the safety and security
of a system. STPA starts from fundamental system engineering activities, including the identification of losses
or accidents to be avoided, the hazardous behaviour that could lead to these losses, safety requirements and
constraints, and the basic system control structure used to avoid these losses. STPA relies on four safety related
activities of system engineering, viz: (a) determination of unacceptable accidents. An accident, in STPA, is
defined as “an unplanned or undesired event that result in a loss of human, human injury, property damage,
environmental pollution, mission loss, etc.”; (b) determination of the system boundaries. Boundaries determine
which conditions related to accidents are considered part of the system and which are considered part of the
environment; (c) Identification of high-level system hazards. A hazard is a system state or a set of conditions
that, together with a particular set of worst-case environmental conditions, will lead to an accident; and (d)
the identification, determination and definition of system safety constraints. System safety constraints are
the conditions the system itself, its organisation and its development process must fulfil to prevent hazards
from occurring. STPA-Sec buttresses STPA in being used to analyse the security of systems. It changes the
traditional bottom-up approach to security, where threats are used to derive the security requirements, to a
top-down approach where the outcomes are more relevant.

STPA has two steps: (1) the identification of potential inadequate control actions that can lead to hazardous
states; and (2) the determination of how these unsafe control actions can occur. Through these two steps,
STPA and STPA-Sec help to generate detailed safety and security requirements and constraints that must be
implemented in the design in order to prevent the identified unacceptable losses.

3.1 Using STPA and STPA-Sec in the Security Analyses of UMS Navigation Module

Two main steps can be identified in STPA Analysis: (1) Identification of the possible accidents in the system, of
system-level hazards leading to these accidents, and of the system constraints that can prevent and/or mitigate
these hazards; and (2) identification of the scenarios that could lead to these unsafe control actions. Table 1 shows
the results of our applying STPA Analysis on the UMS Navigation Module, helping to discern the accidents, the
system-level hazards, and the constraints of the Navigation Module (NM).

3.1.1 Identification of accidents, system-level security hazards and security constraints

In table 1, we see the accidents (AX) that may occur in the system, the hazards that may cause the accidents to
occur (HY), and the security constraints (safe control actions) (CZ) that can prevent or mitigate such hazards.
Section 3.1.2, below, expands on and identifies the unsafe actions that may be caused by these hazards.
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A1 Unavailability of the Navigation Module (NM)

H1.1 NM receives continuous stream of un-usable GNSS signals via a jamming attack

C1.1 NM shall assure assure the accurate and timely receipt of received GNSS signals

H1.2 Malevolent manipulation of hardware and software layers of NM to alter GNSS data
interpretation
C1.2 NM shall guarantee the authenticity of its software and hardware components

A2 Un-authorised disclosure of GNSS information

H2 There is un-authorised disclosure of GNSS information

C2 NM shall assure GNSS data are disclosed only to authorised parties

A3 Received GNSS information are not genuine

H3.1 GNSS information have been intentionally altered via a spoofing attack

C3.1 NM shall assure assure the integrity of received GNSS signals

H3.2 NM receives replayed GNSS signals via a meaconing attack

C3.2 NM shall assure the integrity of received GNSS signals

H3.3 GNSS information have been un-intentionally altered (probably due natural accident)

C3.3 NM shall assure the integrity of received GNSS signals

A4 NM physical antennae poorly installed

H4.1 Antennae installed position inhibits clear view of sky or clear signals from
satellites
C4.1 NM operational staff shall assure correct installation of NM’s antennae

H4.2 Antennae improperly matched to NM receiver

C4.2 NM operational staff shall assure accurate matching of antennae to receiver

A5 Users’ Psychological Error

H5 Over-reliance of users on provided GNSS data

C5 NM shall assure availability of other sources of accurate UMS positioning and timing data

A6 Unintentional Radio Frequency (RF) interference

H6 Noise from nearby RF transmitters interferes with genuine GNSS signals

C6 NM shall assure un-intentional RF interference

Table 1: Accidents, system-level security hazards and security constraints in Navigation Module of UMS

3.1.2 Identifying Unsafe Control Actions (UCA)

After the preliminary hazard analyses carried out in table 1, the next step is to use STAMP’s four general
categories of unsafe control actions (Leveson and Thomas, 2018) of: (a) “Not providing causes hazard”, (b)
“Providing causes hazard”, (c) Wrong timing/ordering causes hazard”, and “Stopping too soon/applying too
long causes hazard”, to identify the conditions under which the hazardous controls, as enumerated in table 1,
could lead to system hazards.

Tables 2 and 3 present our use of STAMP to analyse some controls and outputs issued by the NM. The first
column identifies the analysed control. The second column records the consequences of not providing a safe
control. The third column records the consequences of providing an unsafe control (i.e. the controller allows the
controlled process to perform actions in a context where hazards may occur). The fourth column records the
consequences of providing a safe control too early or too late or in a wrong order. The fifth column records the
consequences of stopping a safe control too soon or applying it too long. Every UCA must be traceable to one
or more system-level hazards (Leveson and Thomas, 2018).

These identified unsafe control actions, with the related hazards, serve many functions. They can be used to
shape early design decisions regarding the security of the system to be built. When the conditions under which
a control action may be unsafe are stated, these help the engineers to perceive those instances, eliminate those
instances from the system design or find ways to mitigate them. When translated into requirements, they form
parts of the constraints to be enforced by the system design.
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Control Ac-
tion

Not Providing
Causes Hazard

Providing
Causes
Hazard

Wrong Time or
Wrong Order
Causes Hazard

Stopped Too
Soon or Applied
Too Long

NM assures
authenticity of
its software &
hardware
components

UCA1:
Malevolent components
installed in NM [H1.2]
UCA2:
Unauthorised principals
able to alter GNSS data
interpretation [H1.2, H2,
H3.2]

None Same as UCA1 &
UCA2

Same as UCA1 &
UCA2 (Stopped
Too Soon)

NM mitigates
jamming attack

UCA3:
Denial of Service attack (of
GNSS data) [H1.1, H5]

None Same as UCA3 Same as UCA3
(Stopped Too Soon)

NM provides au-
thorised disclo-
sure of GNSS
data

UCA4:
Un-authorised entities able
to elicit USV position
(information leakage)
and/or able to replay
GNSS information (traffic
analyses). Possibility of
taking control of USV &
sabotage mission [H2, H3.1,
H3.2]
UCA5
Tampering, i.e.,
deliberately destroying or
corrupting data [H2, H5]

None Same as UCA4 Same as UCA4
(Stopped Too Soon)

NM assures in-
tegrity of GNSS
data

UCA6:
Spoofing attack: Received
GNSS data probably
intentionally altered [H3.1,
H5S]
UCA7
Meaconing attack:
Received genuine GNSS
data replayed back to USV
after timed delay, leading
to GNSS error readings
[H3.2, H5]

None Same as UCA6 &
UCA7

Same as UCA6 &
UCA7 (Stopped
Too Soon)

Table 2: Unsafe Control Actions of the Navigation Module of UMS (1/2).

4 Conclusion and Future Work

The vast majority of global trade flows across the world’s oceans. Unmanned marine systems (UMS) are increas-
ingly being used to facilitate and secure these trade flows. The security of the autonomous navigation of these
systems is becoming increasingly important. Therefore, accurate positioning, velocity, and timing (PVT) values
are essential to their safe navigation. These PVT values are usually provided by the Global Navigation Satellite
Systems (GNSS) signals that are received and decoded by the UMS’ receivers. These signals are very weak
and un-encrypted. Their accurate reception and decoding are, therefore, open to many vulnerabilities. This
paper has used systems, and control, theory and STPA to analyse these vulnerabilities. We identified the major
system-level security hazards and constraints, and especially of unsafe control actions. Our analyses can be used
as a springboard to drive their mitigation and/or resolution, thereby helping to designing a more effective and
secure UMS’ navigation components.

In future work, we will extend these analyses with STPA causal scenarios, and using the Event-B (Abrial,
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Control Ac-
tion

Not Providing
Causes Hazard

Providing
Causes
Hazard

Wrong Time or
Wrong Order
Causes Hazard

Stopped Too
Soon or Applied
Too Long

NM operational
staff installs
antennae
properly

UCA8:
Erroneous GNSS data
received [H4.1, H4.2, H5]

None Same as UCA8 Same as UCA8
(Stopped Too Soon)

NM provides
additional Posi-
tional, Velocity,
Timing (PVT)
sources in addi-
tion to GNSS

UCA9:
Probability of over-reliance
of users on GNSS data [H5]

None Same as UCA9 Same as UCA9
(Stopped Too Soon)

NM provides
provides mit-
igation of un-
intentional RF
interference

UCA10:
Erroneous GNSS data
received [H1.1, H5]

None Same as UCA10 Same as UCA10
(Stopped Too Soon)

Table 3: Unsafe Control Actions of the Navigation Module of UMS (Table 2 contd.) (2/2).

2010) formalism, will develop a framework for security analysis for autonomous navigation of unmanned marine
systems.

References

Abrial, J.-R. (2010). Modeling in Event-B: System and Software Engineering. Cambridge University Press.

Air Force Research Laboratory, Dayton, O. (2013). U.s. air force, autonomy science and technology strategy.

Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. (2004). Basic concepts and taxonomy of dependable
and secure computing. In IEEE Transactions on Dependable and Secure Computing, volume 1, pages 11–33.

Bhatti, J. and Humphreys, T. (2017-05). Hostile control of ships via false gps signals: Demonstration and
detection. Navigation.

Divis, D. A. (2015-09). Scientists document possible drone jamming. Inside Unmanned Systems.

Humphreys, T. (2011). State of the art and future trends in radionavigation. Briefing to USPTO.

Ioannides, R. T., Pany, T., and Gibbons, G. (2016). Known vulnerabilities of global navigation satellite systems,
status, and potential mitigation techniques. In Proceedings of the IEEE, volume 104.

Leveson, N. (2004). A new accident model for engineering safer systems. Safety Science, 42(4):237–270.

Leveson, N. G. and Thomas, J. P. (2018). STPA Handbook.

Maarse, M. (2016). A systematic approach towards gnss receiver vulnerability analysis on remotely piloted
aircraft systems.

Navy, U. S. United states navy biography. http://www.navy.mil/navydata/leadership/quotes.asp?q=253&c=6.
2018-06-28.

Oates, R., Thom, F., and Herries, G. (2013). Security-aware, model-based systems engineering with sysml. In
Proceedings of the 1st International Symposium on ICS & SCADA Cyber Security Research, pages 78–87.

Rawnsley, A. Iran’s alleged drone hack: Tough, but possible. http://www.wired.com/dangerroom/2011/12/iran-
drone-hack-gps.

Rolls-Royce. Rolls-royce written evidence (auv0083). http://data.parliament.uk/writtenevidence/committeeevidence.svc/evidencedocument/science-
and-technology-committee-lords/autonomous-vehicles/written/42075.html.

Safe Navigation

61



Schlinglof, B.-H. (2016). Cyber-physical systems engineering. In Liu, Z. and Zhang, Z., editors, Engineering
Trustworthy Software Systems, volume 9506, pages 256–289. Lecture Notes in Computer Science.

Tyler, B., Crawley, F., and Preston, M. (2015). HAZOP: Guide to Best Practice (3rd ed.). IChemE.

UK, M. Being a responsible industry - an industry code of practice.
https://www.maritimeuk.org/documents/197/CODE OF PRACTICE V1.0 - Up to 24m - Final.pdf.

Young, W. and Leveson, N. (2013). Systems thinking for safety and security. In Proceedings of the 29th Annual
Computer Security Applications Conference, pages 1–8.

ROBOTIC SAILING 2018

62



ASVTrafficSim: A simulator for Autonomous Surface

Vehicle and Manned Vessel Collisions

Colin Sauze
Department of Computer Science

Aberystwyth University
Penglais

Aberystwyth
Ceredigion

United Kingdom
SY23 3DB

cos@aber.ac.uk

Abstract

At present there is only limited data about the probability of collisions
between autonomous surface vehicles (ASVs) and manned vessels. This
paper describes a simulator for calculating the probability of collisions
between them. It is intended to help formulate safety advice and policy
on where and when ASVs can and can’t be safely used. The simulator
tests hypothetical courses of the ASV against real traffic data recorded
from automatic identification system (AIS) transponders. This allows
simulated missions to be tested against real world traffic patterns. The
simulator has successfully simulated example missions using a small
set of example AIS data based in San Francisco bay. Future work will
involve running simulations from large AIS datasets and with a variety
of ASV types, as well as covering differing weather scenarios.

1 Introduction

This paper discusses the design and implementation of an Open Source software tool: ASVTrafficSim for calcu-
lating the probability of an ASV and manned vessel colliding or having a near miss. It is intended to give ASV
operators a tool to evaluate the risk of potential missions and to be able to adjust their mission to reduce this risk.
Recent experience from the Microtransat Challenge has been a number of ASVs accidentally retrieved by fishing
boats. In several of these incidents the ASVs owners unknowingly planned courses which sailed through fishing
grounds. The ability to test their routes for safety in advance might have prevented some of these incidents.

ASVTrafficSim uses data recorded from Automatic Identification System (AIS) transponders to compare a
simulated course with data from real traffic. By running multiple iterations of ASVTrafficSim each with slightly
different courses accurate probabilities of collisions can be determined. It is also possible to determine which
times of day, days of the week or times of year might be safer when comparing against regular traffic such as
passenger ferries.

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.
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1.1 AIS

AIS transponders broadcast the boat’s maritime mobile service identity (MMSI), position, heading, speed, rate
of turn every few seconds over a VHF radio link. AIS is required by all manned vessels over 300 gross tonnes,
with many smaller vessels also opting to use the system. Less frequently sent messages can also include the ship’s
destination, name and dimensions. Two classes of AIS transmitter are available, class A and class B. Class A is
intended for commercial traffic and transmits at higher power (12.5W) and more frequently, its typical range is
around 40 nautical miles (Marine Management Organisation, 2014). The lower power class B system is intended
for pleasure craft and only uses 2 watts of transmission power and transmits less frequently, its typical range is
around 10 nautical miles(Marine Management Organisation, 2014). This lower power and frequency combined
with many smaller boats still not being equipped with AIS mean that data for small craft is often lacking.

A number of internet linked shore receivers pass on data to web services such as MarineTraffic (Marine Traffic,
2018) and AISHub (AISHub, 2018). In recent years satellite based reception has also become increasingly
common, allowing sites like MarineTraffic to cover traffic out of range from shore. Analysis of shipping patterns
from AIS data has become increasingly common (Ristic et al., 2008) (Fiorini et al., 2016). One common output of
these analyses is traffic density maps which show a generalised view of how busy an area is. MarineTraffic(Marine
Traffic, 2018), the US Coastguard(Beuaru of Ocean Energy Management, 2018) and UK government(Marine
Management Organisation, 2014) are amongst those publishing density maps. Although these density maps can
form a useful tool in planning ASV operations they are relatively crude and often lack time of day, day of week
or time of year specific information. ASVTrafficSim aims to provide more a detailed and specific view of the
risks involved with travelling a given route.

1.2 AIS Data Sources

To test against real traffic patterns a source of AIS data was needed. There are a number of commercial
sources of AIS data, however the cost of obtaining raw data from these was prohibitively expensive and not an
option for this research. Several free alternatives were identified. The Marine Cadstre (Beuaru of Ocean Energy
Management, 2018) from the US Coastguard offers a large amount of AIS data, but this is formatted for the
commercial ArcGIS software and is difficult to read without ArcGIS. Several volunteer run networks make data
freely available online. These include AISHub (AISHub, 2018) and aprs.fi. The data on aprs.fi was found to
be lacking in coverage and there don’t appear to be many AIS receivers in their network. AISHub operates an
exchange where free access to data is given in return for contributing data. At time of writing the author has not
setup a receiver capable of contributing to AISHub, but intends to do so in future. The Exploratorium Museum
in San Francisco operates a receiver on the San Francisco seafront that continuously streams raw data to their
website (ais, a). Greenpeace have a collection of 1.2 million messages taken over two days in 2014 is available
from their github page (ais, b). This data is in raw NMEA format and can be decoded using the open source
LibAIS (Schwehr, 2015) software.

2 ASVTrafficSim

ASVTrafficSim is an open source tool written in Python, it is available from (Sauze, 2018). It simulates sailing
of a target route using the open source Sailsd simulator(Taylor, 2016) which has a reasonably accurate physics
model based upon work by (Jaulin and Le Bars, 2012). The autopilot logic for controlling Sailsd operates through
Boatd, another open source tool for presenting an HTTP and JSON based interface to an ASV. Output from
Boatd is sent over a UDP datastream in the form of NMEA0183 GPS strings, these are received and processed
by ASVTrafficSim’s collision detector which uses them to establish the ASV’s current location. Upon starting
ASVTrafficSim loads a datafile of AIS messages and parses these with LibAIS, extracting each report’s Maritime
Mobile Service Identity (MMSI), ship name (where given), latitude, longitude and time. This data was then used
to test for collisions at the simulated time and location. Figure 1 shows how these components are integrated
and communicate with each other.

AIS data is interpolated between data points on a 1 second basis. Typically class A AIS data is transmitted
every few seconds, so there is relatively little error in the interpolation. However class B messages are less
frequent, typically being 10s of seconds apart and due to the lower power they are often not received as easily by
shore stations. The linear interpolation was limited to a maximum of 15 minutes so that boats which are moored
and have switched off their AIS aren’t projected as continuing to travel. This linear interpolation method will
not be completely accurate as it only uses the last heading and speed and ignores if the boat was rotating. A
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small improvement to the accuracy of class B interpolation might also be possible using polynomial interpolation
instead of linear interpolation.

Figure 1: The data flows between the components in ASVTrafficSim and its dependencies.

The Sailsd simulator operates on a realtime basis, to maintain realism ASVTrafficSim also does this. Each
second that time advances in Sailsd corresponds to one second in AIS data of ship movements. This does have
the disadvantage of simulations taking a long time to run. Ship movements are linearly interpolated between
data points in the AIS data and these are generated on a second by second basis. At each one second iteration the
position of every ship is compared with the position of the simulated ASV. Ideally collisions could be calculated by
looking at the ship’s dimensions and working out if it overlapped with the ASV. Unfortunately the Exploratorium
AIS dataset is missing any messages covering boat dimensions. Therefore any ship getting within 10 metres of
the ASV is considered to be a collision and 100 metres a near miss. All collisions and near misses are recorded
and saved by the output map generator. This saves data into a GPX file along with the ship and ASV tracks.

3 Results

A simulated course was setup to sail a square around Alcatraz Island in San Francisco harbour, the simulation
was set to use a northerly wind requiring upwind tacking on the northbound leg of the course. This crosses busy
shipping channels in and out of San Francisco bay, tourist boat traffic going to and around the island and ferries
operating from the city centre. The course taken on this route is shown in figure 2. The 2014 Exploratorium
dataset from the Greenpeace was used to supply traffic information. The simulation run took place between
12:40 and 14:53 UTC (4:40 and 6:53 PST) on November 26th 2014. These times represent the start of the AIS
dataset. 10 laps of the course were completed in this time.

In running this simulation for just over two hours, there were two collisions and 69 near misses. All of these
were with the ferry Zelinsky which operates tours around the island. Both of the collisions occurred when the
boats were less than 10 metres apart over the course of two seconds. The near misses are clustered into two
areas, one on the western side of the course where both boats were sailing in parallel and very closely. The others
are either side of the point where the collision occurred. Figure 3 shows a map of this output, with the near
misses marked as triangles and the collisions as circles.
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Figure 2: A map showing the waypoints used in the test route. Each waypoint is indicated with a triangle. Map
from NOAA ENC Chart US5CA13M (National Oceanic and Atmospheric Administration, 2018).

Figure 3: A map showing the collisions and near misses between the simulated ASV and real traffic. Each near
miss is indicated with a triangle and a collision with a circle. The two collisions are within a few metres of each
other and the first is obscured by the second in this map. The red line around the island is the ASV’s track and
the dark blue line is from the ferry Zelinsky. The other coloured tracks are from other vessels. Map tiles from
Stamen, licensed under CC BY 3.0. Map data from Open Street Map contributors, licensed under CC BY-SA.

4 Conclusion

This work demonstrates the viability of ASVTrafficSim for detecting potential collisions. It allows fine grain
identification of which vessels a collision occurred with or came close to occurring with. This is particularly
valuable when planning routes in areas with regular traffic such as ferries. By running multiple simulation runs
with differing start times or route predictions over wider areas can also be obtained.
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5 Future Work

Future work will involve improving the usability and accuracy of ASVTrafficSim. Usability could be improved so
that a user can simply input the parameters of their USV and intended course and then receive a report showing
the collisions and near misses. Currently the user must start five different programs to run the simulation,
although Docker and Singularity containers are available to simplify this. Run times could be reduced by
removing the real time nature of the simulator and running at faster than real time. At present the physics
model available within Sailsd is still somewhat unrealistic. More fine tuning of its parameters is required to
match the performance of a real USV. It does not include the effects of sea state, tides, currents or simulate any
variations in the wind. A more realistic simulation could be achieved by including these variables. Tides are of
particular importance given how small ASVs are often unable to travel fast enough to fight against strong tides.
To give a clearer idea of the probability of a collision a monte carlo method could be used with the simulation
being repeated many times with small random variations in weather conditions or the course being sailed.

The use of larger AIS datasets will also help to improve the range of simulations which can be run and the
geographic areas which can be tested. Obtaining AIS data remains an obstacle, although commercial providers
of such data exist their prices are prohibitively expensive. AISHub (AISHub, 2018) is a potential alternative to
this as they will provide access to data from their network in exchange for contributing a receiver. Alternatively
datasets could be generated by setting up receivers comparable to the one used by the Exploratorium.
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Abstract

This paper introduces a novel method for modelling the influence of
likely autonomous sailing craft failure conditions into the route plan-
ning algorithm. The accuracy of the original route planning algorithm
is quantified using numerical error estimation techniques. It was found
that over the course of a Trans-Atlantic voyage a grid size of 36 km
produced an error of ±2.1 hours over the course of a 703.25 hr voyage.
The implementation of the failure model within the routing algorithm
is verified using a control weather scenario. This verification is shown
to be significant with respect to the method’s numerical error. Fu-
ture work will involve gathering evidence on failure criteria in order to
update the failure model.

1 Introduction

The Microtransat challenge is a competition undertaken by autonomous sailing craft (ASC) to complete an
Atlantic crossing in the fastest time (Microtransat Challenge, 2018). To the authors knowledge, the Microtransat
challenge has not been successfully completed as a consequence of competing vehicles failing before they complete
the voyage. This paper seeks to address this problem through introducing a voyage failure model into a route
planning algorithm, thereby identifying a route that manages the risk of failure. One use of this method is to
assist with operational route planning with an existing craft. Another use could be to assist with the design
process through modelling the influence of potential failure mechanisms.

Autonomous sailing craft are sailing robots which are designed to operate independently of human control
or maintenance after their planned voyage has started. This independent operation requires that the reliability
of the entire system must be extremely high. This reliability must be modelled based on the environmental
conditions that are likely to be experienced. It is likely that through considering the reliability over the range
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of different environmental conditions experienced on a Trans-Atlantic voyage it will be possible to improve the
likelihood of completing a voyage successfully.

The East-West Trans-Atlantic voyage between the Bay of Biscay and the Caribbean is one of the most travelled
maritime voyages in history. Consequently the common environmental conditions experienced are well known.
Research into the navigational challenges experienced for both directions of the MicroTransat competition (East-
West, West-East) has identified that the only route that compares with the West-East leaves from the Canaries
and not the current start location of the MicroTransat challenge (Schlaefer and Blaurock, 2011). (Schlaefer and
Blaurock, 2011) presented analysis that used failure frequency to estimate the likelihood of completeing a voyage,
although wasn’t able to relate this to the environmental conditions encountered. The East-West Microtransat
route appears to be the most challenging route as participating ASCs fail earlier on this voyage relative to the
other direction (Microtransat Challenge, 2018). Through modelling different failure modes within the routing
algorithm it will be possible to understand why failure occurs earlier on the East-West route and to improve the
design process.

Reliability engineering is the analysis of the different possible failure modes of an engineering artefact. Many
different methodologies exist to achieve this. A Fault Tree was used to model the different factors which may
cause a structural failure for a sailing craft (Auboin, L., Blake, J. I. R. and Turnock, 2010). A failure mode
and effect analysis (FMEA) using fuzzy based failure modes was shown to be effectively applied to a yacht fire
system design (Helvacioglu and Ozen, 2014). This paper demonstrated how it was possible to flexibly model
expert opinion on the efficacy of a system through ranking hazards and then using fuzzy logic to model the
influence of the lack of knowledge.

Bayesian belief networks (BBNs) have been used to model a complex network of empirical data and expert
opinion which calculated the probability of Autonomous Underwater Vehicle failure given a specific voyage
scenario (Brito and Griffiths, 2016). Various different reliability engineering and design problems have been
shown to be capably modelled using BBNs (Friis-Hansen, 2000). Given the lack of data on sailing craft design
the flexibility to incorporate different failure mechanisms and sources of information mean that BBNs offer the
most suitable framework to model the reliability of an ASC. The output of a BBN is a probability of some event
occuring given a range of input factors which can be structural or environmental.

Sailing craft route planning uses environmental factors to determine the optimal route for a sailing craft to take
given its performance and the specific optimisation algorithm used. The most important environmental factor
considered is the wind vector, this can be generated using a wind model, reanalysis data or weather forecast.
The first research into solving the sailing craft route planning problem used a recursive dynamic programming
formulation which divided the domain into nodes over which the shortest path was calculated (Philpott and
Mason, 2001). Different wind models (Philpott et al., 2004; Dalang et al., 2014) or race strategy and opponent
models (Spenkuch, 2014; Tagliaferri and Viola, 2017) have been used to improve the accuracy of sailing routing
models.

The influence of different methods of modelling the ability for a sailing craft to sail upwind has been explored
(Stelzer and Pröll, 2008) along with modelling the time taken to complete course changes (Ladany and Levi,
2017). The chief drawback of these methods is that they become unwieldy when applied to the long course
route modelling problem. Full scale sailing craft race modelling has typically minimised either the time taken
to complete a course (Ferretti and Festa, 2018), or the risk of losing to an opponent (Tagliaferri et al., 2014).
To the authors knowledge, the consideration of reliability as a constraining factor in the sailing craft routing
algorithm is a novel one.

This paper introduces a novel method for modelling the reliability of the sailing craft within the cost function
used in the routing algorithm. This will allow the identification of routes which meet different sets of failure
criteria.

2 Method

2.1 Voyage failure model

The performance of the ASC can be specified in terms of its speed and failure mechanisms. The failure mech-
anisms may be estimated from structural analysis or empirical data on past failures. If no information exists
then it is possible to specify different combination of environmental parameters which are likely to cause failure.
Using these parameters it will be possible to avoid environmental conditions which are likely to cause failure.

Figure 1 illustrates an example of a BBN which relates environmental parameters describing the wind and
the waves to the calculation of the probability of voyage failure. The top rank of nodes take the values of the
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environmental parameters as inputs. The middle rank accept the inputs and calculate the probability of craft
failure if neither parameter will cause a failure, a single parameter causes failure or both will cause failure. It
is possible to model three different failure levels in this manner, although due to the flexibility of the BBN it is
possible to integrate different physical models into the calculation of failure probability.

Bayesian belief networks use Bayes rule, Equation 1, in order to relate the probability of a specific event
occuring given that other events have already occured. P (A|B) is the probability of event A occuring given that
event B is true, P (B|A) is the likelihood of B occuring given that A is true and P (A), P (B) are the likelihoods
of A and B occuring independently of each other.

P (A|B) =
P (B|A)P (A)

P (B)
(1)

The failure model used in this paper relates two failure conditions based on the wave height and appar-
ent direction to the probability of voyage failure. The joint probability distribution can be defined as being
P (F,WD,WH) = P (F |WD,WH)P (WD)P (WH). The names of the model have been abbreviated as F = voy-
age failure (true/false), WD = apparent wave direction failure (true/false) and WH = wave height (true/false).
Note that it is possible to use continuous distributions to model events rather than binary criteria.

If the criteria for the apparent wave direction failure are met then it is possible to calculate the likelihood of
voyage failure using Equation 2. The weather conditions at a specific point determine whether the failure criteria
are triggered. Table 1 defines the conditional probability table which enables the calculation of the probability
of failure as a consequence of a single or either wave failure criteria being met. Note that it is possible to use
continuous probability distributions within a BBN which would allow more realistic modelling of reliability.

P (F = T |WD = T ) =
P (F = T,WD = T )

P (F = T )
=

∑
WH∈T,F P (F = T,WH,WD = T )∑
WD,WH∈T,F P (WD,WH,F = T )

(2)

WD Criteria WD Criteria Pass Fail

T F 0.1 0.9
F T 0.1 0.9
F F 1.0 0.0
T T 0.0 1.0

Table 1: Conditional probability table relating failure criteria combination to the probability of failure.

2.2 Route modelling

The sailing craft routing algorithm used to identify the shortest path is the recursive dynamic program formu-
lation introduced in (Philpott and Mason, 2001). The advantage of using the dynamic programming paradigm
is that it is able to guarantee that the identified route is the best candidate of all possible routes in the domain,
according to Bellmans principle of optimality (Bellman, 1957). The chief drawback is the large computational
cost incurred through checking all possible solutions.

To begin the process a great circle route is drawn between the start and finish location with the extents of
the rectangular domain limited by the number of nodes in a rank and the distance between each node. The
continuous domain is divided into discrete nodes as is illustrated in Figure 2. Each node is connected to all the
nodes in the preceding and anteceding ranks to form a digraph connecting the start and the finish node.

For the position at any given node i the travel time between nodes i and a node on the next rank j along the
arc (i, j) starting at time t is carc(i, j, t) = cseg(xi,xj , t). This function considers the wind speed and direction
and course direction and calculates boat speed from known performance data. The wind speed and direction is
a function of time and space and is retrieved from the wind scenario being used. cseg(xi,xj , t) is the time taken
to sail the great circle joining location xi to location xj starting at time t.

The minimum time path is identified using a forward looking recursive algorithm which is described in Equation
3. f∗(i, t) is the time taken for the optimal sequence of decisions from the node-time pair (i, t) to the finish node
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Figure 1: A Bayesian Belief Network to
model the relationship between environmen-
tal conditions and the probability of voyage
failure.

Figure 2: The continuous domain between
the start and finish is discretized into points
as a function of the distance between each
point.

and j∗(i, t) is the successor of i on the optimal path when in state t. Γi is the set of all nodes on the graph.

f∗(i, t) =

{
0, i = nfinish

minj∈Γi [carc(i, j, t) + f∗(j, t+ carc(i, j, t))], otherwise

j∗(i, j) = arg min
j∈Γi

[carc(i, j, t) + f∗(j, t+ carc(i, j, t))], i 6= nfinish

(3)

The failure model is introduced into the carc function, as shown in Algorithm 1. Extra variables such as the
weather scenario and the acceptable probability of failure apf are introduced. VS is the speed for the particular
set of weather conditions. If the failure model for a given segment at a given time exceeds a specified acceptable
probability of failure then the time taken to complete the arc is set as infinite, otherwise the speed is interpolated
from known performance data. When the shortest path is identified it naturally avoids these arcs and thus returns
a route which is the minimum time route that meets the reliability requirement.

Algorithm 1 Cost function

1: function cseg( xi,xj , t, apf ,Weather scenario)
2: WHi, WDi, TWAi, TWSi ← Weather scenario . Weather conditions
3: pf ← BBN Failure(WHi, WDi, TWAi, TWSi, t)
4: if pf < apf then
5: V T = Distancecseg/VS(WHi, WDi, TWAi, TWSi)
6: else
7: V T = inf
8: end if
9: end function

3 Application

To verify whether the failure model is sensitive to the inclusion of failure the error generated as a result of the
discretization of the domain must be calculated. The approach taken to calculate discretization error involves
solving the shortest path for a control weather scenario over a range of grid sizes.

The simulation error estimated is used to inform the simulations used to demonstrate the efficacy of the failure
model. In order to demonstrate the ability of the failure model, known weather conditions which trigger failure
are modelled in the control weather scenario. Through specifying two different known failure conditions it will
be possible to show whether and how the failure model informs the choice of route so as to avoid areas which will
trigger failure. Code has been developed to support this analysis and a link is included in the acknowledgements.
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3.1 Solution accuracy

The routing algorithm approximates the minimum voyaging time based on a discretization of a continuous
domain. Consequently there is an associated discretization error which must be quantified in order to give
credibility to the results. The route simulated is the East-West MicroTransat route using the performance of an
ASV, the Maribot Vane, to give context to the results. Although the Maribot Vane does not meet the rules of
the MicroTransat challenge it is a similar craft type has has experimentally validated performance data (Dhomè,
2017). The wind condition across the domain has been set at 15 knots from the North. This isolates the source
of any variation in voyaging time to the variation in grid size.

To quantify the discretization error the Grid Convergence Index (GCI) was calculated (Roache, 1997; Celik
et al., 2008). The GCI index calculates the difference between the estimated result and the extrapolated result
calculated as a function of the trend of the previous grid sizes. This index is often used in Computational Fluid
Dynamics to calculate a 95% confidence region. As it has previously not been used to interpret routing algorithm
results this index can only be used to guide the interpretation of whether the grid size used is fine enough for
purpose.

The grid size may be limited as soon as the voyaging time results have started to converge asymptotically as
there will be little improvement in accuracy at the expense of large computational cost. Another limiting factor
is the physical implication of the area enclosed in the cell, if the cell is too large it may not physically relate to
the routing problem.

The results for routing simulations over a range of grid sizes can be seen in Figure 3. The control weather
scenario used modelled the wind as being 15 knots from the North across the whole domain. The start location
was 45o N and 12o W and the finish location was 17.5o N and 60.0 W. Relative to the scale of the simulation
the error associated with a normalised grid height of 36327.16 is 0.298%, corresponding to ±2.1 hours. Over the
course of route lasting roughly 870 hours an error of ±2.1 hours is acceptable.
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Figure 3: Grid discretization size study

3.2 Influence of failure model on routing time

This section demonstrates the application of the novel reliability routing method using a control weather sce-
nario. This weather scenario has been modified with patches of weather designed to activate the failure model.
The control weather scenario encompasses the entire routing domain and has weather parameters which are
independent of time. The simulations were run using a grid spacing of 36 km which corresponds to 160 nodes
along a given edge, 25600 in total.

Two rectangular patches have been introduced into the domain with specific environmental conditions designed
to trigger one and then both failure criteria. Area 2 is the larger patch with the co-ordinates ±5o about the
central point at 40o W 33o N and has the wave height parameter set to 4m and is designed to provoke the single
failure criteria. Area 1 has the wave direction set to 240 degrees, approximately the reciprocal bearing of the
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East-West Trans-Atlantic course and is a rectangular area with the points ±3o about the central point at 40o W
33o N. The combination of Areas 1 and 2 will provoke the double criteria failure model. The hypothesis is that
without a failure model the shortest path will cross both areas, a double failure model will skirt Area 1 and the
single failure model will skirt Area 2.

A challenge regarding the modelling of ASC failure is the lack of available data on their failure and potential
failure modes, this is likely a consequence of the impracticality of their recovery on the event of voyage failure. A
failure model is constructed using a BBN where the probability of failure is a consequence of different combination
of environmental parameters being exceeded.

The failure model implemented has three discrete levels of failure. The initial level represents no failure criteria
being exceeded, the second level represents a single failure criteria being exceeded and the final level represents
routing despite any combination of failure criteria being exceeded. This model uses the structure of the BBN
illustrated in Figure 1.

Two wave statistics are assumed to be significant with regards to causing the failure of an ASC, the wave
direction and the wave height. For this control weather scenario the triggering failure criteria are when the wave
height exceeds 4m and the apparent wave direction is under 60o. These parameters are selected in order to
illustrate the ability for the BBN to avoid failure conditions rather than from any real performance data. Ship
design uses mean wave height as part of the design process to estimate the motions that the ship will have to.
Sailing directly into waves is known to be challenging, therefore it is useful to demonstrate an ability within the
routing algorithm to avoid this occuring.

Three different simulations were run with the three different failure criteria. Figure 4 shows the shortest path
where the failure model allows for two failure criteria to be met, it can be seen that the shortest path travels
directly through both areas. The single failure criteria route avoids area 1 but travels through area 2, as shown
in Figure 5. The double failure criteria route, shown in Figure 6, shows that the failure model is able to avoid
both areas. The route takes 29 days and 7 hours ignoring any failure criteria, with the time taken increasing by
25 hours to avoid two failure criteria and by another 25 hours in order to avoid any failure criteria.

The results illustrated in Figures 4 to 6 illustrate the ability for the routing algorithm to avoid areas where the
failure model calculates a probability which is unacceptable. Each routing result differs by an amount significantly
over 2.1 hours, the estimated accuracy of the original routing algorithm, indicating that the variation in result
is due to the failure model.

Figure 4: Shortest path avoiding
any failures.

Figure 5: Shortest path avoiding
two failures.

Figure 6: Shortest path avoiding
one failure.

ROBOTIC SAILING 2018

76



4 Conclusions

Autonomous sailing craft competing the MicroTransat competition have suffered some form of critical failure
before they have been able to finish. To model this problem this paper has introduced a novel methodology by
introducing a failure model within the sailing craft routing algorithm. In order to demonstrate the impact of the
routing model the accuracy of the routing algorithm needed to be quantified.

Routing algorithms are generally based on a discretization of a continuous domain that results in an error.
This error is reduced as the accuracy of the discretization process is increased but increases the computational
cost of running the simulation. The error was calculated using the grid convergence index, a parameter borrowed
from the discipline of Computational Fluid Dynamics and measures the difference between the simulated result
and the actual result inferred based of a trend of previous results. The grid convergence index was calculated
for a series of routing simulations which were solved for a range of different grid sizes. A balance between
computational run time and accuracy was achieved through using an effective grid height of 36 km to discretize
the domain. This corresponds to an error of ±2.1 hours over a voyage lasting 703.25 hours.

A failure model has been implemented that is able to model two levels of failure, thereby demonstrating the
flexibility of the Bayesian Belief network with regards to modelling different combinations of failure causes. The
levels of failure modelled are a function of the mean wave height and direction. This has modelled the difficulty
for sailing craft to maintain a course when either sailing in heavy seas or sailing into the wave direction.

To demonstrate the ability of the failure model to avoid areas which exceed a specified probability of failure,
simulations varying the probability of failure were conducted with a control weather scenario. In the centre
of the domain two patches of failure-inducing weather were placed. The failure model routing algorithm was
able to avoid these failure inducing patches according to different acceptable levels of failure. To the authors
knowledge this is the first calculation and application of discretization error in the interpretation of routing
algorithm simulation results.

4.1 Future work

Integrating empirical or modelled autonomous sailing craft failure data into the failure model would allow realistic
route modelling to take place. This will involve collaboration with designers and users who have been able to
model or record specific failure modes and their causes and to incoporate this information into an improved
failure model. As the failure model has demonstrated an ability to avoid areas of risk, one extentsion could be
to input the locations of common fishing areas, as a common cause of ASC failure is being caught by fishing
vessels (Microtransat Challenge, 2018).

The routing algorithm does not account for the time cost associated with tacking or gybing. It is noted that
the time taken for an ASV to recover speed is small with respect to the overall time of voyaging, however as the
accuracy of the routing has been quantified it is now possible to test whether a significant difference is achieved
through including such a manouevre model.

Another avenue of research could be into the use of Genetic Algorithms or Monte Carlo Tree Search method
for the purpose of accelerating the solution optimisation time.
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Abstract

The multi-dimensional dynamic programming method is applied to the
long-term route planning of an autonomous sailboat from Shanghai
to Qingdao. The sailed voyage length out of the current position is
adopted to be the third-dimensional state variable. The short-term
route planning between the neighboring waypoints is defined as the
control variable. A group of optimal routes with minimum voyage
time can be obtained corresponding to different voyage length. The
result shows that by adding the state variable dimension, more optional
routes are kept in the final results, which is valuable for better decision
support.

1 Introduction

Marine environment monitoring has great significance in sustainable development of marine economy. With
improvement of telecommunication and sensor technology, marine monitoring methods have gradually changed
from exploration mode which relies on a large number of human resources to observation mode with longer
monitoring time and wider coverage. The sailboat relying on natural wind to keep autonomous navigation is
suitable for carrying various sensors to accomplish different monitoring tasks (Cruz, 2008) (Rynne, 2009).

In the case that the destination and the wind field in the sailing area are known, the conventional motor boat
must avoid strong wind area as much as possible to ensure safety and to reduce fuel consumption. However, route
planning for sailboats must fully consider favorable wind conditions. Therefore, long-term route planning of the
sailboat is more complex and important than that of conventional motor boats. The most popular long-term
route planning method for sailboats is based on A* algorithm. Ulm University in Germany developed a route
planning program based on A* algorithm and wind field forecast information (Langbein, 2011). Shanghai Jiao
Tong University adopted A* algorithm and local optimal method respectively to plan the long-term route (Kang,
2016). The planning objectives of those researches are minimum voyage time.
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Since only a few variables can be considered in the planning process of A* algorithm, it is difficult to handle
complex environmental factors and constraints. United States Naval Academy selected Northern Route and
Southern Route as two feasible plans for “Spirit of Annapolis” transatlantic navigation based on the pilot charts,
and then compared the strengths and weaknesses of the two routes according to hurricanes, currents, sea ice,
wind fields, and seaports (Gibbons-Neff, 2011). The factors considered in that planning process are far more
than those of the conventional A* algorithm. If planning algorithms are used to assist decision-making in route
planning, more diverse planning results should be provided. Strathclyde University in the United Kingdom
adopted three-dimensional dynamic programming (3DDP) in the route planning of motor ships. By defining
position and sailing time as state variables, heading and sailing speed as decision variables, a group of minimum
fuel consumption paths with different sailing time was planned for further consideration (Shao, 2013).

In this paper, 3DDP was applied for long-term route planning of an unmanned sailboat from Shanghai to
Qingdao. The current position and the sailed voyage length are defined as state variables. The short-distance
route planning between the neighbor waypoints is defined as the control variable. For different total lengths, a
group of routes with minimum voyage time is obtained as decision assistance. The final long-term solution can
be chosen from those planned routes by combining more factors.

2 Sailboat Model and Sailing Sea Area

2.1 Sailboat Model and Polar Diagram of sailboat Speed

The total length of the sailboat model is 1.5m. Based on the existing hull design scheme (Wang, 2015), two rigid
wing sails are equipped and the airfoil profile is NACA0012. The overall appearance of the sailboat is shown
in Figure 1. Static VPP algorithm is used to obtain the polar diagram of sailboat speed (Oossanen, 1993).
The curves shown in Figure 2 respectively represent the maximum speed of different heading angles when wind
direction is 0 degree and wind speed is Vwind. The VPP results are not only rapidity indicator but the basis for
estimating sailing time in long-term route planning.

Figure 1: Sailboat model

2.2 Grid Design

In long-term route planning for sailboat, the sailing area is discretized into a grid system to specify the spatial
layout of stages and states. As described in Figure 3, the great circle route which represents the shortest course
from Shanghai to Qingdao on the surface of the earth is divided into (N − 1) stages equally, and M points are
created perpendicularly away from the great circle with a unit spacing of X. Thus, the grid is described as
(i, k). For example, the departure is ((M + 1)/2, 1), and the destination is ((M + 1)/2, N). In this paper, the
parameters are N=31 and M=31.
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Figure 2: Polar diagram of sailboat speed

Figure 3: Projections of the space grid system

3 Dynamic Programming for sailboat route planning

Dynamic programming is an effective method to solve multi-stage decision problems. By establishing the recursive
relationship between two neighboring stages, the optimal decision at each stage can be obtained. The optimal
decision at each stage establishes the optimal decision sequence for the entire process (Teng, 2011). There are two
kinds of solutions in dynamic programming. Backward dynamic programming is recursive from the destination
to the starting stage, and forward dynamic programming is recursive from the starting point to the destination.
The recursive relationship of forward dynamic programming is described as (Shao, 2013):

Manoeuvre & Route Planning

81



J∗(
−→
X (k), k) = min−→

U (q−1),q=2,···,k
{
k∑

q=2

αq(
−→
X (q),

−→
U (q − 1), q)}

= min−→
U (k−1)

{αk(
−→
X (k),

−→
U (k − 1), k) + J∗(

−→
X (k − 1), k − 1)}

J∗(
−→
X (1), 1) = 0

k = 2, 3, · · · , N
where k is the stage variable.

−→
X (q) is the state variable of stage k.

−→
U (q − 1) is the control variable which can

make the sailboat transfer from state
−→
X (q−1) at the stage (q−1) to state

−→
X (q) at stage q. αq(

−→
X (q),

−→
U (q−1), q)

is the cost function from stage (q − 1) to q.
∑k
q=2 αq(

−→
X (q),

−→
U (q − 1), q) is the objective function at the current

stage k. The control sequence
−→
U (q − 1) corresponding to the minimum objective function J∗(

−→
X (k), k) is the

best decision sequence.
The recursive relationship between J∗(

−→
X (k), k) and J∗(

−→
X (k − 1), k − 1) in the equation above reflects the

multi-stage thinking of dynamic programming. From the minimum of J∗(
−→
X (k − 1), k − 1) at stage (k − 1)

and all cost function αk(
−→
X (k),

−→
U (k − 1), k), the optimal control variable

−→
U (k − 1) and the minimum objective

function J∗(
−→
X (k), k) at stage k can be obtained. One dimensional or multi-dimensional programming can be

used depending on the dimension of the state variable
−→
X (q).

In this research, the stage variable is k = 1, 2, 3, · · · , 31. k=1 is in Shanghai and k=31 is in the destination
Qingdao. In the state variable X(i, j, k), (i, k) represents the grid point shown in Figure3, and j is a state
variable of the route length Li,k from the departure to the current waypoint (i, k). The route length Li,k is
equally devided into 30 groups labelled with the state variable j by using the following rounding equation:

j =

⌊
Li,k − Lk,min

(Lk,max − Lk,min)/30
+ 1

⌋

where Lk,min is the minimum route length of the great circle route from the departure to the current stage k, and
Lk,max is the double value of Lk,min. After division of the route length by stete variable j, all the routing scheme
from the departure to the current waypoint are divided into 30 groups and from each group one optimal route
plan can be obtained. Obviously, the additional dimension of the state variable j provides more alternatives for
decision support. The scheme is illustrated in Figure 4.

Figure 4: Illustration of state variable X(i, j, k)

The control variable U(i,, j,, k − 1) which makes the sailboat transfer from the state variable X(i,, j,, k − 1) at
stage (k−1) to the state variable X(i, j, k) at stage k is actually the short-term routing scheme from the waypoint

ROBOTIC SAILING 2018

82



(i,, k − 1) to (i, k). In this paper, the straight path scheme with the maximum speed is used for downwind and
beamwind sailing, and the tacking scheme with the maximum speed is used for sailing against wind.

The cost function t(X(i, j, k), U(i,, j,, k − 1), k) is the sailing time from waypoint (i,, k − 1) to (i, k) under the
control variable U(i,, j,, k− 1). The maximum speed when sailing downwind or beamwind is obtained according
to polar diagram of sailboat speed and wind field. When sailing against wind the maximum speed is defined as
Ctack∆uπ/4 where Ctack is the cost coefficient of tacking and uπ/4 is the maximum speed when wind direction
is π/4. Thus, the dynamic recurrence relation of the long-term route planning of the sailboat is expressed as
below, and the detailed process of dynamic planning is shown in Figure 5.

J∗
p (X(i, p, k), k) = min

U(i,,j,,k−1),j=p
{t(X(i, j, k),

−→
U (i,, j,, k − 1), k) + J∗

j (
−→
X (i,, j,, k − 1), k − 1)}

p = 1, 2, · · · , 30

i = 1, 2, · · · , 31

J∗
1 (X(16, 1, 1), 1) = 0

Figure 5: Flow of long-term route planning for sailboat
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4 Long-term Route Planning Results

4.1 Steady Uniform Wind Field

3DDP was adopted in the route planning from Shanghai to Qingdao. The wind speed was 6m/s steadily and
the wind direction was north, south, west and east respectively. As shown in Figure 6, a group of routes with
the shortest time was obtained in different route length. In the cases of south, east and west wind, the total
length of the route is positively correlated with the minimum voyage time. The route with the shortest length
and sailing time is almost a straight line between the starting point and the destination. The minimum voyage
time for those three cases is about 100 hours. With the total length increasing, the route with the minimum
voyage time gradually moves away from the coastline. Obviously, by adding the total length of the route as a
planning variable, the planning result provides more selections and plays a better role in decision support.

Figure 6: Route planning results in steady uniform wind field

In the case of north wind, the minimum voyage time is about 160 hours with a total route length of 750km,
which is significantly longer than that of other three cases. The total length of the route is positively correlated
with the minimum voyage time when the route length is over 750km. However, when the route length is less
than 750km, the minimum voyage time increases significantly with the decreasing of route length. The short
route less than 750km restricts the tacking operation to a smaller upwind angle which causes slower speed and
longer sailing time.

4.2 Steady non-uniform Wind Field

As shown in Figure 7, the instantaneous wind field on May 20th, 2017 was adopted according to National Centers
for Environmental Prediction. The maximum wind speed is about 10m/s. A group of alternative routes with
minimum voyage time in different voyage length from Shanghai to Qingdao was obtained by using 3DDP method.
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Figure 7: Wind direction and Speed of steady non-uniform wind field

The simulation result in Figure 8 is similar to that of steady north wind. The minimum voyage time is 150h
corresponding to a total voyage length of 750km. But the route is close to the coastline and is risky of collision.
Thus, the final sailing route could be selected from the other alternatives.

Figure 8: Route planning results in steady non-uniform wind field

5 Conclusions

In this research, 3DDP is adopted to long-term route planning for an autonomous sailboat. Apart from the
current position of the sailboat, the sailed voyage length is defined as the third state variable. Without that
variable, only one optimal path is obtained from all the path schemes. However, in 3DDP method, all path
schemes from the departure to the current point are divided into up to 30 groups according to the total length
of the route. Each group can generate a planning result with minimum voyage time. 3DDP provides more
alternatives for decision support.

When the sailboat sails downwind or beamwind, the total length of the route is positively correlated with the
minimum voyage time. The route with the shortest length and sailing time is almost a straight path between
the departure and the destination.

When the sailboat sails against wind, if the total length of the route is less than a certain critical value, the
minimum sailing time will increase significantly with the total length of the route decreasing restricted by tacking
operation.
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Abstract

Existing controllers for sailboat robots are usually developed for speed
performances and for long straight lines. In this context, the accuracy
is not the main concern. In this paper, we consider the tight slalom
problem which requires accuracy. We propose a feedback-linearization
based method combined with a vector field approach to control the
sailboat. Some simulations show that the robot is able to perform the
slalom without missing any gate.

1 Introduction

We consider a mobile robot described by the state equations (Jaulin, 2015a)

{
ẋ = f(x,u)
p = g(x)

(1)

with an input vector u = (u1, . . . , um), a state vector x = (x1, . . . , xn) and a pose vector p = (p1, . . . , pm+1)
with n ≥ m + 1. The goal of this paper is to show we can follow a chosen vector field in the p space (Khatib,
1986)(Pêtres et al., 2011)(Schmitt et al., 2016), using a feedback-linearization based method. It means that we
can control m+ 1 state variables and not only m of them, as given by the theory (Isidori, 1995). This is due to
the fact that we perform a path following instead of a trajectory tracking where the time is involved. In practice,
the vector p corresponds to the position of the center of the robot and may be of dimension 2 (if m = 1) or 3 (if
m = 2). This is consistent with the fact that we need one actuator to control the direction of a 2D vehicle such
as a car or a boat and two actuators for a 3D vehicle such as a plane.

The approach we propose is to find a controller so that the vector ṗ be collinear (instead of equal) to the
required field. This is illustrated in this paper in the case where the mobile robot is a sailboat (Miller et al.,
2012)(Cruz and Alves, 2008)(Holger et al., 2009). The input u is scalar (i.e., m = 1) and corresponds to the
rudder. Moreover, we will show that this approach is particularly adapted to sailboats where the speed is hardly
controllable (Neumann and Schlaefer, 2012)(Stelzer et al., 2007).
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2 Method

In order to facilitate the understanding of our approach, we will deal with a Dubins car, which is much simpler
than a sailboat. The extension to other type of mobile robots is straightforward.

2.1 Line following for a Dubins car

To introduce our approach, we consider a robot (here a Dubins car) moving on a plane and described by the
following state equations: 




ẋ1 = cosx3
ẋ2 = sinx3
ẋ3 = u

(2)

where x3 is the heading of the robot and p = (x1, x2) are the coordinates of its center. The state vector is given
by x = (x1, x2, x3).

Let us choose as the control output the variable

y = x3 + atan(x2). (3)

and let us find a classical feedback linearization based controller (Jaulin, 2015b) such that the output y (which
can be interpreted as an error) converges to 0. In such a case, we will have
x3 + atan(x2) = 0
and the robot will perform a line following. Differentiating (3) we have

ẏ = ẋ3 +
ẋ2

1 + x22
= u+

sinx3
1 + x22

. (4)

Since u occurs in (4), the relative degree of the system is 1. We may thus choose a first order equation for the
error y, such as

ẏ + y = 0, (5)

We then choose u to have this error equation satisfied. From (4) and (5), we get:

u = −y − sin x3

1+x2
2

= −x3 − atan(x2)− sin x3

1+x2
2

(6)

Note that we do not have any singularity. As illustrated by the simulation depicted on Figure 1, the associated
vector field makes the car attracted by the line x2 = 0.

Figure 1: Precise line following

Remark. For more robustness with respect to small uncertainties, a sliding mode effect could be added. It
suffices to take for required error

y = x3 + atan (x2 + α · sign (x2)) ,
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where α is a small positive coefficient, e.g., α = 0.1. In such a case, the robot will go to the line in a finite
time (and not asymptotically, as previously). Moreover, it will remains exactly on the line even if some small
uncertainties occur.

2.2 Generalization

We want our robot to follow the field ψ(p), more precisely, we want that ψ(p) and ṗ point toward the same
direction. This condition can be translated into the form ϕ (ψ(p), ṗ) = 0, where ϕ is a collinearity function
which satisfies

ϕ (r, s) = 0⇔ ∃λ > 0, λr = s. (7)

Typically, this function corresponds to one angle (the heading) if m = 1 and two angles (heading, elevation) for
m = 2. Note that the function ϕ cannot be expressed with a determinant since r, s should not point toward
opposite directions. We define the output

y = ϕ (ψ(p), ṗ) = ϕ

(
ψ(g (x)),

∂g

∂x
(x) · f (x,u)

)
. (8)

Since y ∈ Rm, we can apply a feedback linearization method and we get y → 0. This means that the robot
will follows the required field. Note that we have no control on the speed, which is not our main concern in this
paper.

2D case. Consider for instance the case where m = 1. We have

ψ(p) =

(
ψ1 (p)
ψ2 (p)

)
. (9)

We take as an output y, the angle between the actual heading vector ṗ = ∂g
∂x (x) · f (x,u) and the desired heading

vector given by ψ(p). Denote by θ (x) the argument of the vector ṗ. We have

y
(8)
= = angle

(
ψ(g (x)), ∂g∂x (x) · f (x,u)

)

= angle

(
ψ(g (x)),

(
cos θ
sin θ

))

= sawtooth(θ−atan2(ψ2(g (x))︸ ︷︷ ︸
b

,ψ1(g (x))︸ ︷︷ ︸
a

))

(10)

The sawtooth function is given by:

sawtooth(θ̃) = 2atan
(

tan θ̃
2

)
= mod(θ̃ + π, 2π)− π (11)

As illustrated in Figure 2, the function corresponds to an error in heading. The interest in taking an error
θ̃ filtered by the sawtooth function is to avoid the problem of the 2kπ modulus: we would like a 2kπ to be
considered non-zero.

Figure 2: Sawtooth function used to avoid the jumps in the heading control

We have

ẏ = θ̇ − (− b

a2 + b2︸ ︷︷ ︸
∂atan2(b,a)

∂a

· ȧ+
a

a2 + b2︸ ︷︷ ︸
∂atan2(b,a)

∂b

· ḃ)

= u+ b·ȧ−a·ḃ
a2+b2 ,

(12)
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if we assume that the input u corresponds to the desired angular velocity. We propose a feedback linearization
based control based on the required equation ẏ = −y. We have

u
(12)
= ẏ − (b·ȧ−a·ḃ)

a2+b2

= −y − (b·ȧ−a·ḃ)
a2+b2 (since ẏ = −y)

(10)
= − (sawtooth(θ − atan2(b, a))− (b·ȧ−a·ḃ)

a2+b2 .

(13)

We thus have the guarantee that after some time, the error angle y is 0 and that we follow exactly the vector
field.

2.3 Dubins car following the Van der Pol cycle

We would like our Dubins car to follow a path corresponding to the limit cycle of the Van der Pol equation:

ψ(p) =

(
p2

−
(
0.01 p21 − 1

)
p2 − p1

)
. (14)

Take g (x) = (x1, x2)
T

which means that we want to build the paths in the (x1, x2)-space. We have

ψ(g (x)) =

(
x2

−
(
0.01 x21 − 1

)
x2 − x1

)
(15)

and

∂g

∂x
(x) · f (x,u) =

(
1 0 0
0 1 0

)
·




cosx3
sinx3
u


 (16)

Thus

a = x2
b = −(0.01 x21 − 1)x2 − x1
θ = x3

(17)

and

ȧ = sinx3
ḃ = − (0.01 · 2x1ẋ1)x2 −

(
0.01 x21 − 1

)
ẋ2 − ẋ1

= −0.02 · x1x2 cosx3 −
(
0.01 x21 − 1

)
sinx3 − cosx3

(18)

From (13), we get that final controller is

u = −sawtooth
(
x3 − atan2

(
−
(
x2
1

100 − 1
)
x2 − x1, x2

))

+

((
x2
1

100−1

)
x2+x1

)
·sin x3+x2·

(
x1x2 cos x3

50 +

(
x2
1

100−1

)
sin x3+cos x3

)

x2
2+

((
x2
1

100−1

)
x2+x1

)2

(19)

The behavior of the control law is illustrated by Figure 3. The car is very close to the true limit cycle, which
is not the case if we consider a classical linear controller. Indeed, the controller anticipates the fact that the
required trajectory have to take into account the curvature of the vector field.

3 Application to the slalom problem

We consider the following model which corresponds to a simplified version of the sailboat model given in (Jaulin
and Le Bars, 2013). The state equations are
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Figure 3: Dubins describing accurately the Van der Pol cycle





ẋ1 = v cos θ
ẋ2 = v sin θ

θ̇ = −ρ2v sin 2u1
v̇ = ρ3 ‖wap‖ sin (δs − ψap) sin δs − ρ1v2
σ = cosψap + cosu2

δs =

{
π + ψap if σ ≤ 0

−sign (sinψap) · u2 otherwise

wap =

(
−a sin (θ)− v
−a cos (θ)

)

ψap = angle wap

(20)

where ρ1 = 0.003, ρ2 = 0.2, ρ3 = 3. In this equation u1, u2 correspond to the tuning of the rudder and the sail,
respectively. We would like our robot to follow a path which makes a tight slalom through doors that have to
be passed. We assume that we have a Cartesian equation for our path. For instance, we consider that the path
is described by

e (p) = 10 sin
(p1

10

)
− p2 = 0 (21)

where e (p) corresponds to an error. This path corresponds to a path that should be possible for a normal
sailboat robot for crosswind conditions. We take a vector field which corresponds to a pole placement strategy.
For instance, we want the error satisfies ė = −0.1 e, so that it will converge to zero in about 10 sec. Thus

cos
(p1

10

)
ṗ1 − ṗ2

︸ ︷︷ ︸
ė(p)

= − 1

10

(
10 sin

(p1
10

)
− p2

)

︸ ︷︷ ︸
e(p)

(22)

We take ṗ1 = 1, to go to the right. As a consequence, we get the following field:

ψ(p) =

(
ṗ1
ṗ2

)
=

(
1

cos
(
p1
10

)
+ 1

10

(
10 sin

(
p1
10

)
− p2

)
)

(23)

which is attracted by the curve p2 = 10 sin
(
p1
10

)
.

We have

ψ(g (x)) =

(
1

cos
(
x1

10

)
+ 1

10

(
10 sin

(
x1

10

)
− x2

)
)

(24)
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and
∂g

∂x
(x) · f (x,u) =

(
cosx3
sinx3

)
. (25)

Thus
a = 1
b = cos

(
x1

10

)
+ sin

(
x1

10

)
− 1

10x2
(26)

and
ȧ = 0

ḃ = −ẋ1 1
10 sin

(
x1

10

)
+ ẋ1

1
10 cos

(
x1

10

)
− 1

10 ẋ2
= 1

10 cosx3 ·
(
cos
(
x1

10

)
− sin

(
x1

10

))
− 1

10 sinx3.
(27)

From (13), we get that the desired angular velocity should be

ω̂ = − (sawtooth(θ − atan2(b, a))− (b·ȧ−a·ḃ)
a2+b2

. (28)

Now, since the true angular velocity is θ̇ = −ρ2v sin 2u1, we take

u1 = −1

2
arcsin

(
tanh

(
ω̂

ρ2v

))
. (29)

The saturation function tanh is needed since the rudder cannot respond to any required ω̂. Indeed, if our
controller ask to turn too fast for the boat, ω̂

ρ2v
will be more than 1, and the rudder can only do its best. The

behavior of our controller is illustrated by Figure 4, where the sailboat has to slalom tightly between doors. We
can see that the trajectory follows exactly the sine path (magenta).

The Python source codes associated to the simulation can be found at:

https://www.ensta-bretagne.fr/jaulin/slalompy.zip

w
in
d

Figure 4: The sailboat robot slaloms through the blue doors

4 Conclusion

In this paper, we have proposed a new controller for sailboat robots which allows to take into account the
curvature of the required field in order to anticipate as much as possible the required trajectory. To our knowledge,
this is not considered by existing controllers (Le Bars and Jaulin, 2013) which are devoted to straight lines (Plumet
et al., 2018). It has been shown that the required vector field could be followed exactly. This anticipation is
crucial if we want to maneuver quickly and precisely as needed when we want to avoid an obstacle. This has
been illustrated on a simulated test-case where a tight slalom is performed by a sailboat robot.
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Abstract

To move upwind, sailing vessels have to cross the wind by tacking.
During this manoeuvre distance made good may be lost and especially
smaller vessels may struggle to complete a tack in averse wind and wave
conditions. A decision for the best tack manoeuvre needs to be made
based on weather and available tack implementations.

This paper develops an adaptive probabilistic tack manoeuvre deci-
sion method. The order of attempting different tacking strategies is
based on previous success within a timeout, combined with an explo-
ration component. This method is successfully demonstrated on the
1m long sailing vessel Black Python. Four strategies for crossing the
wind were evaluated through adaptive probabilistic choices, and the
best was identified without detailed sensory knowledge of the actual
weather conditions.

Based on the positive results, further improvements for a better se-
lection process are suggested and the potential of using the collected
data to recognise the impact of weather conditions on tacking efforts is
recognised.
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1 Introduction

Current work on manoeuvre planning for sailing robots focuses on long term piloting from planning the actions
until the next waypoint to routing a vessel over longer distances (Tynan, 2018; Langbein et al., 2011). When
the routing towards a waypoint, all sailing vessels rely on manoeuvres to cross the wind: tacking, where the
vessel turns with the bow facing towards the wind, or jibing, where the vessel turns with the bow facing away
from the wind. Typically, sailing robots are controlled by using a rudder to control the heading of the vessel and
then adjusting the sails based on the relative wind direction (Gomes et al., 2017) even if recent sail designs may
include heading control in the sail (Augenstein et al., 2017). Vessel speed and boat drag are often recognised as
a factor for successfully completing a tack (Jouffroy, 2009a; Jouffroy, 2009b). (Cruz and Alves, 2014) recognises
that a sailing robot can get stuck facing into the wind, in sailing terms ’in irons’, and suggests to recover from
such a situation by increasing speed; thus gaining rudder control through letting the sails loose so the wind can
push the boat backwards. (Tranzatto et al., 2015) studies how to perform fast and smooth tack manoeuvres
using control system theory and compares 3 different rudder controls for tacking, however tack fails are not
mentioned. Modeling a tacking manoeuvre could also be done to analyse the problem of tack failure. Several
studies developed tacking simulators based partially on experimental measurements (Masuyama and Fukasawa,
2011; Roncin and Kobus, 2004; Spenkuch et al., 2010), however they are applied on large sailing boats where
tack failure is not an issue, and is hence not discussed. When sailing the 1m long Southampton Sailing Robot,
the Black Python, we found that the success and speed of a tack manoeuvre for such a small vessel not only
depends on having sufficient speed and suitable rudder action to pass through the wind, but also on passing
through the wave fronts pushed towards it by the wind. Where a human sailor would make choices about the
sail and rudder settings based on speed and wave observations and experience, making small adjustment as the
manoeuvre proceeds, implementing this process for a robotic sailor is challenging. Not only is it difficult to
translate experience into software, but also the amount of sensor data that is required increases significantly
compared to a dead-reckoning tack manoeuvre. As an alternative to fully measuring and considering all factors
involved, the introduced system adapts to the wind and waves conditions by testing and evaluating several
available tack methods.

This paper investigates a dynamic weighting approach to choose the best method to perform a tack in order
to minimise the number of failed tacking attempts whilst having minimal sensor knowledge of weather and boat
state. After introducing the Black Python vessel, its sensors and the software structure in the Systems section, we
focus on the software components that control the tack manoeuvre, suggesting several tacking implementations
and a tack weighting process based on previous successful and failed tack manoeuvres. The methods introduced
are demonstrated on experiment results obtained in coastal waters near Southampton.

2 System presentation

2.1 The boat

The Black Python, see Figure 1a, is a one-meter-long Lintel mono-hull sailing robot yacht of class IOM (In-
ternational One Metre) designed by David Creed. This boat is designed for racing performances and is used
in remote controlled regatta. Three different sets of sails with a sail area of 6000, 4100 and 2700 cm2 can be
used depending on the wind conditions. The hull’s beam is 165 mm and the hull displacement is 4000 g. Minor
changes have been made to fit wiring. The Black Python uses bulb keel that is 420 mm deep, and has a spade
rudder for steering. Profile view of the Black Python is shown in Figure 1b.

2.2 Electronics

A Raspberry Pi 3 B (RPi) microcomputer is used as the main control board. It is powered by a 5V USB power
bank. A foam stand and plastic box keep the RPi away from water that occasionally gets inside the boat.

A uBLOX MAX M8Q GPS unit gives the boat position and velocity, it communicates with the RPi via I2C
(Inter-Integrated Circuit). A conventional USB WiFi dongle is placed together with the GPS and a small IMU
(Pololu AltIMU-10 v4) unit on the top of the mast. Inside the boat, an Xsens MTi 3 IMU (Inertial Measurement
Unit) is used. It includes an accelerometer, gyroscope and magnetometer. The IMU is placed directly on top of
the RPi. The yacht uses a custom made wind vane (Figure 1c). Two magnets are attached to the rotating part
and a Pololu AltIMU-10 v4 is placed on the stator. The magnetometer on the IMU detects the change in the
magnetic field as the wind vane is rotated by the wind, determining the wind direction relative to the boat.
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(a) The Black Python in Southampton water
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(c) Custom made wind vane

Figure 1: The Black Python

A Futaba S3003 servomotor is used to drive the rudder and a HiTec 785 HB winch servomotor drives both
mainsail and jib at once. A remote control receiver as well as a multiplexer are used to take control of the sailing
robot in case of emergency or during the launch and recovery phases. The motors, multiplexer and RC receiver
are powered by 4 AA batteries which are monitored with an Adafruit INA219 current sensor to ensure sufficient
power for a remote controlled recovery.

2.3 Software

As mentioned in the previous section, the main computer of the Black Python is a Raspberry Pi. It runs the
GNU/Linux distribution Ubuntu 16.04. The software is written in Python and utilises ROS (Robot Operating
System1, (Quigley et al., 2009)); a framework for writing robot software. ROS includes a collection of tools and
libraries to simplify the task of developing complex behaviours. In the ROS ecosystem, the code is structured
around scripts called nodes. Each node can send messages under a certain topic name: this is called publish-
ing. Nodes can also listen for specific topics by subscribing to them. The entire software developed by the
Southampton Sailing Robot Team is made available under the MIT free software licence2.

High-level:
- Task manager

- Path planning

Sensor driver:
- IMU

- GPS

- Wind vane

- ...

Post high-level:
- Helming decision

Actuator driver:
- Sail servo

- Rudder servo

Tack order

Heading

Wind direction

Position

Sheet length

Rudder angle

Debugging:
- Web server

- Live map

Position

 # of satellites

  Wind direction

   ...
        Tack order

     Goal heading

 Distance to waypoint

 ...

Chosen procedure

Wind direction

Heading

Goal heading

Figure 2: Structure of the code, arrows symbolise ROS messages passing

1https://ros.org
2https://github.com/Maritime-Robotics-Student-Society/sailing-robot
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The software of the Black Python is structured as follows:

• Drivers: nodes talking directly to hardware components; this includes reading sensor data from the GPS,
wind vane or obstacle avoidance camera as well as adjusting servo motor positions to set rudder angle and
sail sheet.

• High-level : path planning nodes deciding when to switch tack and which heading to follow to complete a
task. Available tasks are: reaching a waypoint, keeping a position, and avoiding an obstacle.

• Post high-level : the helming node converting the goal heading or tack order from high-level nodes into rudder
angle and sail position. The helming node is described in depth in section 3.

• Debugging : nodes for visualisation of messages; from maps with waypoint and boat positions to graphical
displays of angle information like heading, goal heading, and wind direction

Figure 2 illustrates the software structure, giving key nodes and the messages exchanging information between
them. To achieve a particular assignment, the user configures the robot via parameter files. These include a list
defining the tasks to run and task specific parameters like waypoint coordinates.

3 Post high-level: dynamic tack control

Weather conditions are sometimes not suitable for tacking on such small boats (dues to waves for example). In
this situations a reliable approach is to jibe instead. The switch between tacking and jibing to cross the wind was
implemented in the past on the Black Python using a user defined parameter set before each test. Whilst being a
fail-safe method, we measured that jibing instead of tacking makes the vessel looses about 3m made good, when
beating at 50 degree from the wind and with a speed of 0.75m/s. This leads to a loss of about 6 seconds per
jibe, hence jibing should only happen when necessary. The post high-level was introduced to increase the choice
of available manoeuvres alternatives to jibing and to automate the decision between all available tack and jibe
manoeuvres.

The post high-level layer currently consists of the helming node alone, which operates between the low level
drivers and the high level nodes. When the boat is not trying to switch tack, the rudder angle is set using
a heading PID control. To set the sail sheet length, a predefined look up table containing the apparent wind
direction versus the sail sheet length is used. When a tack order is given from the high-level nodes, the helming
node is responsible for implementing a successful tack by changing the sheet length and rudder angle demands,
choosing from a set of available procedures based on past events and a dynamic weight system with an exploration
component.

In the context of the helming node, a procedure is the name given to a series of instructions that commands
the sail and the rudder to perform a change of tack (jibe or tack). Several procedures are implemented:

• Basic tack (BasicTack): the rudder is set to its maximum position either on the port side if the boat was
sailing on a port tack, or on the starboard side otherwise.

• Basic jibe (BasicJibe): the rudder is set to its maximum position in reversed compared to a tack. To help
with bearing away the sails are sheeted out.

• Tack with sheet out (TackSheetOut): the rudder is set to its maximum position to perform a tack, and the
sails are slightly sheeted out. On a conventional sailing boat the main sail tends to make the boat go more
upwind, when the jib pushes the boat to go downwind. Sheeting out the jib can help with tacking, however
on the Black Python both sails share the same control. This procedure hence tries to reduce the power in
the jib by sheeting out a little both sails while conducting the tack.

• Tack with speed build up (TackIncreaseAngleToWind): to speed up the boat and gain momentum to aid
passing the tipping point of the tack the boat will bear away for 5 seconds at 80 degrees from the wind. It
will then perform an usual tack with setting the rudder to its maximum position.

The basic functioning of the helming node is as follows: Before each switch of tack, the procedure list is
ordered by the time taken by each procedure in the past. The procedures in the list are tried in order until one
succeeds to make the boat switch tack before a user defined timeout. After each procedure attempt, the time
it took is recorded for future use to determine the order in the procedure list. A tack procedure is considered
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a success if the time the procedure took in order to have the boat on the opposite tack (at an angle between
50 and 120 degrees relative to the wind) is bellow the user defined timeout. If a procedure fails it is placed
further towards the end of the list by recording a value of 1.5 times the timeout. To ensure that all procedures
are attempted, an exploration coefficient is considered as well.

Three user defined variables are used:

• timeout: timeout in seconds after which a procedure is considered as failed

• ProcedureList: initial order of the procedure list

• Exploration coefficient: probability (0 to 1) of picking an untried procedure instead of the top list entry

The ProcedureList is a python list of dictionaries, each element of the list has three dictionary keys:
Procedure which is a pointer to the procedure class, TimeList a list of the time taken by the last 10 at-
tempts of this procedure, and finally InitPos the initial position of the procedure in the ProcedureList as
defined by the user.

Every time a tack is attempted, the ProcedureList is ordered based on weight. The procedure with the
lowest weight will be tried first. The weights are computed as follows:

If the procedure have been tried in the past (ie. TimeList is not empty), its weight is the mean of the elements
of the TimeList, in other words the average time the procedure took in the past. On the other hand, if the
procedure has never been tried before, the TimeList is empty, then the Exploration coefficient is used. To
know if the procedure will be picked by the exploration, a random number between 0 and 1 is generated. If it is
above the Exploration coefficient no exploration is done. A combination of the timeout and the InitPos

is given as the weight. This places the procedure between already attempted procedures, before the failed ones
but after the succeeded ones whilst keeping all unused procedures in order of the initial list. Otherwise, if the
randomly picked value is bellow the Exploration coefficient the procedure is placed at the top of the list by
giving it a random weight between 0s and 0.1s (the random value ensures an arbitrary selection between methods
picked by the exploration coefficient). The computation of the weight is summarised in Algorithm 1.

Algorithm 1 Function to get the weight of each procedure

1: function getWeight(procedure)
2: if procedure.TimeList not empty then
3: return mean(procedure.TimeList)
4: else
5: if random(0,1) < explore coef/number of untested procedures then
6: return random(0, 0.1)

7: else
8: return timeout + 0.01*procedure.InitPos

Once the ProcedureList is ordered, it will not be reordered until the next high-level command to change
tack. The list entries are attempted in order until a procedure successfully completes before the timeout. If all
elements of the ProcedureList are tried without a success, the procedure selection will continue with the same
list, beginning at the top entry.

3.1 Example of run

In this section a step by step example of a fictional run is described and illustrated in figure 3. The wind is
coming from the North, and the boat is beating upwind. The user defined parameters are as follows:

• Timeout: 15s

• ProcedureList: [BasicTack, TackSheetOut, BasicJibe]

• Exploration coefficient: 0.3

Manoeuvre & Route Planning

99



BasicTack
TackSheetOut
BasicJibe

1.

2.

3.

4.

5.
Wind

direction

Figure 3: Fictional example of run with the helming node procedure picking

1. The boat starts sailing on a port tack, close hauled.

2. The helming node receives a tack change command from the high-level nodes. The ProcedureList is sorted.
None of the unused (all) procedures is moved to the top of the list through the Exploration coefficient,
hence the ProcedureList is as defined by the user: [BasicTack, TackSheetOut, BasicJibe]. The BasicTack
is tried, it succeeds in 7 seconds. The boat continues on a starboard tack.

3. The high-level commands the helming node to change tack. The ProcedureList is ordered. This time
the weight of the BasicTack is 7, making it the node with the fastest average time. The Exploration

coefficient places the TackSheetOut procedure first in the ProcedureList: [TackSheetOut, BasicTack,
BasicJibe]. The TackSheetOut is tried, but does not succeed before the timeout of 15 s. A value of 22.5
(1.5 times the timeout) is stored in the TimeList for the TackSheetOut. The next procedure on the list,
the BasicTack, is tried and succeeds in 8 seconds. The boat continues on a port tack.

4. The high-level commands the helming node to change tack. The ProcedureList is ordered, the Exploration
coefficient causes no re-ordering. The ProcedureList is: [BasicTack, BasicJibe, TackSheetOut]. The
BasicTack is tried and fails, the next procedure (BasicJibe) is tried and succeed in 9 seconds. The boat
continues its course.

5. The high-level commands the helming node to change tack. The ProcedureList is ordered, no re-ordering
is caused by the Exploration coefficient. The BasicTack has a weight of 12.5 (mean of 7, 8 and 22.5),
TackSheetOut has a weight of 22.5 (failed once) and BasicJibe has a weight of 9. The order is hence
[BasicJibe, BasicTack, TackSheetOut]. The BasicJibe is tried and it is a success.

3.2 Discussion on parameter selection

The user defined parameters were purposefully kept at a minimum and chosen to have an easily understandable
meaning. The exploration coefficient may however demand some experience of the boat behaviour to be set
properly. A low exploration coefficient should be used when the user is confident with his ordering of the
procedure list or when he knows that very few tacks will be performed during the test. Hence finding the
best possible manoeuvre is not as rewarding as finding a working manoeuvre. On the other hand when a
larger number of tacks are to be expected, setting the exploration coefficient higher will help finding the most
performant method. The timeout should be set at the minimum value that allows ones boat to perform a tack
manoeuvre in the expected (or all) weather conditions. A too low timeout will lead to the helming node cycling
through the procedures and keeping failing when a too high value will make the boat loose time when trying a
procedure for the first time.
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4 Experiments

The experiment was conducted on the sea near Southampton Sailing Club shown in Figure 4. Wind direction
gradually shifted from south-east to south. The averaged wind direction according to the wind direction data
collected from the wind vane on the boat is shown in Figure 4a. Averaged wind speed was 4 knots with gusts at
5 knots. Small waves with height of 15 - 20 cm have been observed during the test.

(a) (b)

(c)

BasicTack
TackSheetOut
TackIncreaseAngleToWind
BasicJibe

Remote controled
Normal mode

Waypoint 1

Waypoint 2

Figure 4: Experiment results in Southampton water

During the experiment, the boat was programmed to sail between two waypoints separated by 20m shown
as a green and red circle on Figure 4. The Black Python was released from a runway on north of the visible
map. To avoid being washed back by the waves the boat was first navigated into the ocean by a remote control.
Once the boat was further away from the shore, the autonomous mode was activated. It tried to reach the first
waypoint using the helming node described in previous section. An acceptance radius of 1.5m was set for all
waypoints, parameters used in this experiment were:

• timeout: 30s

• ProcedureList: [BasicTack, TackSheetOut, TackIncreaseAngleToWind, BasicJibe]

• Exploration coefficient: 0.3

Experiment results are shown in Figure 4. In the first leg, three tack manoeuvres were made to reach the
waypoint. As shown in Figure 4b, the first tack was done with a TackSheetOut procedure. Whilst being the
second element in the initial ProcedureList, it was tried first because during the manual controlled phase the
helming node was still running and a BasicTack failed, moving this procedure at the end of the list. This
behaviour is not intended and will be fixed. The TackSheetOut succeeded in 9s. For the second manoeuvre,
TackSheetOut was tried first and failed, TackIncreaseAngleToWind was then conducted and succeeded in 19s.
For the next tack, TackIncreaseAngleToWind was tried first. It however failed, the next element in the sorted
list now being TackSheetOut. This procedure was tried and also failed, finally a BasicJibe was conducted with
success in 19s.
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After getting to the first waypoint, the boat sailed towards the second waypoint as shown in Figure 4c. Two
TackIncreaseAngleToWind were performed and succeeded. For the next tack manoeuvre, all four procedures
were tried: first TackIncreaseAngleToWind did not manage to perform the tack leading to the boat bearing
away, then TackSheetOut was tried without success. Later BasicJibe was tried, the boat managed to switch
tack, however, the jibe did not finish on time and switching to BasicTack was needed to finalise the manoeuvre.
The last leg from the second waypoint to the first one is downwind, the helming node did not start any procedure
and the boat sailed in a straight line. After the boat reached the first waypoint again, wind condition stopped
us from doing any further repeating tests.

On this day, the low wind speed made it particularly difficult leading to a lot of failed manoeuvres. Here the
exploration never picked a random untried procedure because all procedures were tried in the first three tacks.
With such low wind conditions, increasing the timeout might help reducing the number of failed manoeuvres
because regardless of the method the boat is very slow to switch heading. This test demonstrated good functioning
of the helming node and results show that in such weather jibing or taking up speed by bearing away first helps
switching tack.

5 Concluding remarks and future work

Tacking on a small sailing boat is a delicate manoeuvre, the method presented here efficiently identifies a good
strategy to perform a tack. The key aspect of the helming node framework and decision system is its simplicity;
it does not rely on any additional hardware or even complex data processing but only on sensors that are
already widely used on robotic sailing boats (heading and wind direction). It makes it easy to implement and
to debug. From an user point of view, the simplicity of the implementation is also visible by the limited number
of parameters and their physical meaning. Only 3 user defined parameters are needed (a timeout, a sorted list
of procedure and an exploration coefficient) and all of them have an easy to understand meaning, no extensive
knowledge of the boat behaviour or the weather conditions is needed.

The helming node system was successfully demonstrated, but it can still be improved on several aspects. If
all the manoeuvres of the ProcedureList fail, this can mean that the selected timeout is too short. Instead of
rerunning the list with the same parameter, increasing the timeout automatically would be judicious. Additional
tack procedures could further consider the sea state, for example by timing the tacks based on the position of
the boat on the waves. Although some work to detect wave period has been done by the Southampton Sailing
Robot Team, more tests are still needed to refine the method and integrate it as a procedure. Lastly, for now
only the time taken by a procedure is measured to assess its performances. To more accurately consider the
distance lost during the jibe manoeuvre combining the time with the distance gained towards the next waypoint,
for example, could be an improvement of the helming node weighting process. Also the method is currently not
suitable for long term tests where weather conditions might change over time. An improvement of the weighting
that includes an aging parameter would be preferable in this case.

After performing more tests with this new system, a better understanding of each procedure will be gained and
more precise and general conclusions concerning the best way to perform a tack in a specific weather condition
can be drawn.
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Abstract

We consider an underwater robot equipped with an altimeter (a simple
echo-sounder oriented downward), a barometer and a low cost gyro-
scope. The robot has no compass. We show that using vector field
control combined with a Kalman observer, it is possible to follow an
isobath (which is a curve that connects all points having the same
depth). The robustness of the controller is validated on a simulation.

1 Introduction

This paper deals with the difficult problem for a robot to explore an unknown environment, without any localiza-
tion system and without being lost. By being lost, we mean not being able to reach a target set, or equivalently
not being able to come back home. Under the water, we can easily know the depth using a barometer and the
problem of finding a path can be considered in the horizontal 2D plane. If we are able to measure some quantities
such as the altitude, the temperature, the salinity, etc, we can find a reliable path which allows us not being lost.
This the case of underwater animals such as marine turtles, or whales which follow isotherms (Lohmann and
Lohmann, 1996) with the help of an internal compass. These underwater animals do not know where they are
but they know from the evolutionary process that if they follow a sequence of iso-potentials they will perform a
cycle which is stable.

Here, to perform the exploration we will rely on a bathymetric approach. This is motivated by the thesis
of Rohou (Rohou, 2017) who has shown that once some underwater exploration has been done, a bathymetric
localization can be performed if we know the map. Better than that, an efficient and reliable bathymetric
simultaneous localization and mapping (SLAM) could be done using the tube approach of Rohou (Rohou, 2017).
Now, Rohou assumed that the mission was already performed and an external localization system had to be used
for this purpose. This motivates the need to explore an unknown underwater environment using an altimeter
as the single exteroceptive sensor. The paper proposes a solution for this exploration following an isobath in a
simple manner, with simple low cost sensors, without any compass and without surfacing to use the GPS.

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.
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Figure 1: Underwater robot that has to follow an isobath

2 Problem

An isobath is an imaginary curve that connects all points having the same depth h(x, y) below the surface, i.e.,
an underwater level curve. Consider an underwater robot (Jaulin, 2015a) described by the state equation:





ẋ = cosψ
ẏ = sinψ
ż = u1
ψ̇ = u2

(1)

where (x, y, z) corresponds to the position of the robot and ψ is its heading angle. The robot is able to measure
its altitude y1 with an echo sounder which is a simple and low-cost sonar transmitting a sound pulse. The time
interval between emission and return of a pulse is recorded and provides the distance to the seafloor. In the
first part of the paper, we assume that we measure the angle y2 of the gradient of h in its own frame. This
assumption which is not always realistic will be lifted later in Section 4. Moreover the robot is able to know its
depth y3 using a pressure sensor.

The observation function of our system is thus




y1 = z − h(x, y)
y2 = angle(∇h(x, y))− ψ
y3 = −z

(2)

where ∇h(x, y) the gradient of h. For instance, if y =
(
7,−π

2 , 2
)
, the robot knows that it is following an isobath

corresponding to −y1 − y3 = −7− 2 = −9m, at a depth of 2m. This is illustrated by Figure 1.

3 Controller

In this section, we propose a controller of the form u = r (y), which makes the robot follows an isobath corre-
sponding to h0 = −9m at a depth y3 = 2m. For the control of the depth, we can take a proportional control of
the form

u1 = y3 − y3. (3)

For the heading, assume that we first want to follow the isobath just below the robot. Equivalently we want to
the robot be perpendicular to ∇h(x, y), for instance, y2 = ±π

2 , depending if we want the gradient on our right or
on our left. Take for instance e1 = y2 + π

2 as an error. This means that we want to have an angle y2 = −π
2 with

∇h, or equivalently, we want ∇h on the right, as in Figure 1. If e1 = 0, we follow an isobath, but is may not be
the right one. We thus have to consider another error corresponding to e2 = −y3−y1−h0 = 0. It e2 = 0, we are
just above the right isobath but maybe not parallel to it. If both e1 = 0 and e2 = 0, we are on the right isobath
(e1 = 0) but we also go on the right direction (e2 = 0). For the heading, we may take the following controller

u2 = tanh(e2) + sawtooth(e1) = −tanh(h0 + y3 + y1) + sawtooth(y2 +
π

2
), (4)
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where tanh creates a saturation (Jaulin, 2015b). The sawtooth function is given by:

sawtooth(θ̃) = 2atan
(

tan θ̃
2

)
= mod(θ̃ + π, 2π)− π (5)

As illustrated by Figure 2, the function corresponds to an error in heading. The interest in taking an error
θ̃ filtered by the sawtooth function is to avoid the problem of the 2kπ modulus: we would like a 2kπ to be
considered non-zero.

Figure 2: Sawtooth function used to avoid the jumps in the heading control

The controller may thus be given by

u =

(
y3 − y3

−tanh(h0 + y3 + y1) + sawtooth(y2 + π
2 )

)
. (6)

The coefficients for the controller (all taken here equal to ±1) should be tuned in order to have the stability
and correct time constants.

Remark. For the heading, the controller is close to a proportional and derivative control, where tanh(h0 +
y3 + y1) corresponds to the proportional term and sawtooth(y2 + π

2 ) to the derivative term. For the heading
control, we could take a proportional and derivative control of the form

u2 = (y1 − y1) + ẏ1 = (y1 − y1) + ż −∇h(x, y) ·
(

cosψ
sinψ

)
, (7)

where y1 = −y3−h0 , ż can be assumed to be zero and ∇h(x, y) ·
(

cosψ
sinψ

)
is assimilated to sawtooth(y2 + π

2 ).

Recall that x, y, ψ are not measured and cannot be used by our controller.

Test-case

We consider a seafloor described by

h (x, y) = 2 · e− (x+2)2+(y+2)2

10 + 2 · e− (x−2)2+(y−2)2

10 − 10. (8)

For the initial condition, we take x = 2, y = −1, z = −2, ψ = 0 we obtain the trajectory depicted on Figure 3.
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Figure 3: Simulation of underwater robot (blue) following an isobath. The surface shadow (gray) and the seafloor
shadow are also painted.

4 Using an observer to get the gradient of the seafloor

We assumed previously that the robot was able to measure the vertical distance y1 to the seafloor using an echo-
sounder. Now, we have also assumed that the robot was also able to measure the angle y2 of the underneath
isobath which is not realistic with a low-cost sonar. The angle y2 = angle(∇h(x, y))−ψ should thus be estimated
using an observer such as a Kalman filter. The idea is similar to what is proposed in (Jaulin, 2015a) in the context
where a car has to follow a wall at a given distance from measuring the distance to the wall only.

In the local frame of the robot projected onto the surface, the underneath plane satisfies the equation

z1 = p1x1 + p2y1 + p3 (9)

where (p1, p2) corresponds to the gradient and p3 to h (x, y). Let us note that

• (i) Since the robot has no compass, it has no idea of its orientation and can thus have an estimation of its
neighborhood only in its own frame. This is why we have chosen to express the plane in the robot frame.

• (ii) Without limitation of the method, we have chosen a linear model. Now, for more accuracy, we could
have taken a model of the seafloor with more parameters, such as a quadratic model z1 = p1x

2
1 + p2y

2
1 +

p3x1y1 +p4x1 +p5y1 +p5. This quadratic model is particularly interesting if the seafloor is smoothly curved.

Prediction. We assumed that the underneath seafloor is locally planar. We thus have:

ṗ =




0 ψ̇ 0

−ψ̇ 0 0
1 0 0


p. (10)

This equation can be understood by the fact that the gradient (p1, p2) turns with the robot and that the variable
p3 increases when the robot moves with the gradient (i.e., with p1). As a consequence, we can assume the
following prediction equation for the underneath plane:
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Kalman filter

controller

Figure 4: Use of a Kalman filter to estimate the seafloor

p (k + 1) =




1 dt · u2 (k) 0
−dt · u2 (k) 1 0

dt 0 1


p (k) +α (k) . (11)

where α (k) is a white Gaussian noise, the covariance matrix of which depends on how planar is the seafloor.

Correction. Since we measure both the altitude y1 and the depth y3, we have an indirect measurement of
p3. We thus have the correction equation:

−y1 − y3 =
(

0 0 1
)
p (k) + β (k) . (12)

where β (k) is a white Gaussian noise. The unknown gradient can thus be estimated by a Kalman filter which
returns an estimation p̂ of p. This is illustrated by Figure 4. In the Kalman filter box, we have represented a
plane which what is actually estimated by the Kalman observer.

The controller (6) may thus be given by

u =

(
y3 − y3

−tanh(h0 − p̂3) + sawtooth(atan2(p̂2, p̂1) + π
2 )

)
. (13)

As illustrated by Figure 5, the trajectory oscillates and the isobath following is less accurate. If we observe the
covariance matrix for p, we observe that when the seafloor becomes planar for a while, the estimation is good
at the beginning and becomes slowly very bad. This is due to the fact that a straight trajectory corresponds to
a singularity. Now, in such a case, the robot goes ahead and performs the isobath following. Later, when the
seafloor changes its orientation, the estimation of p becomes more accurate and the robot is able to change its
orientation accordingly.
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Figure 5: The underwater robot follows an isobath, without compass and with a low-cost echo-sounder

5 Conclusion

In this paper, we have shown that it was possible to follow an isobath with low-cost sensors that are not greedy
in energy. Now, once we are able to follow such an isobath, it should be possible to detect the existence of a
cycle using proprioceptive sensors (motors for instance) (Aubry et al., 2013). Such a cycle could thus lead us to
a localization and also to the possibility to perform a bathymetric SLAM. Since the control is bathymetric, we
have all elements to solve a pure bathymetric explore and return problem (Newman et al., 2002) which has not
been solved yet, to our knowledge.
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